Skip to main content
Log in

Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate the dynamics of granular flows under the action of a centrifugal acceleration field. The granular flows consist of a monodisperse set of glass beads flowing down an inclined plane. The experiments are performed at variable slope angles \(\zeta \) and equivalent centrifugal accelerations \(a_\text {cf}\equiv Ng\). We study the effect of this parameters on the superficial flow velocity u and flow height h. Two trends are observed, by increasing \(\zeta \) and \(a_\text {cf}\), u increases proportionally, and h decreases asymptotically until a constant height. This relation is analysed in terms of the system potential and kinetic energy, leading to the estimation of equivalent impact forces one order of magnitude larger than those observed in small scale 1g laboratory experiments, with the possibility to reach higher forces by increasing N. Finally, considering the trend of u and h, our results suggest a scaling principle of inertial velocity proportional to \(\sqrt{N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)

    Article  ADS  Google Scholar 

  2. Ancey, C., Bain, V.: Dynamics of glide avalanches and snow gliding. Rev. Geophys. 53(3), 745–784 (2015). doi:10.1002/2015RG000491

    Article  ADS  Google Scholar 

  3. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media. Between Fluid and Solid. Cambridge Univ Press, Cambridge (2013)

    Book  Google Scholar 

  4. Arndt, T., Brucks, A., Ottino, J., Lueptow, R.: Creeping granular motion under variable gravity levels. Phys. Rev. E 74, 031307 (2006)

    Article  ADS  Google Scholar 

  5. Bowman, E., Take, A.: The runout of chalk cliff collapses in england and france–case studies and physical model experiments. Landslides 12(2), 225–239 (2014). doi:10.1007/s10346-014-0472-2

    Article  Google Scholar 

  6. Bowman, E., Laue, J., Springman, S.: Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Can. Geotech. J. 47(7), 742–762 (2010)

    Article  Google Scholar 

  7. Bowman, E., Take, A., Rait, K., Hann, C.: Physical models of rock avalanche spreading behaviour with dynamic fragmentation. Can. Geotech. J. 49(4), 460–476 (2012). doi:10.1139/t2012-007

    Article  Google Scholar 

  8. Brucks, A., Arndt, T., Ottino, J.M., Lueptow, R.M.: Behavior of flowing granular materials under variable \(g\). Phys. Rev. E 75(032), 301 (2007). doi:10.1103/PhysRevE.75.032301

    Google Scholar 

  9. Bryant, S., Take, W., Bowman, E., Millen, M.: Physical and numerical modelling of dry granular flows under coriolis conditions. Gotechnique 65(3), 188–200 (2015). doi:10.1680/geot.13.P.208

    Article  Google Scholar 

  10. Cabrera, M.: Experimental modelling of granular flows in rotating frames. Ph.D. thesis, University of Natural Resources and Life Sciences, Vienna (2016)

  11. Cabrera, M., Wu, W.: Space-time digital image analysis for granular flows. Int. J. Phys. Modell. Geotech. (2016). doi:10.1680/jphmg.16.00018

    Google Scholar 

  12. Cabrera, M., Wu, W.: Scale model for mass flows down an inclined plane in a geotechnical centrifuge. Geotech. Test. J. (2017). doi:10.1520/GTJ20160044

  13. Cabrera, M., Mathews, J., Wu, W.: Granular flows in the centrifuge. In: Proceedings of the The 3rd European Conference on Physical Modelling in Geotechnics (EUROFUGE 2016) (2016)

  14. Depken, M., Lechman, J., van Hecke, M., van Saarloos, W., Grest, G.: Stresses in smooth flows of dense granular media. EPL (Europhys. Lett.) 78(5), 58001 (2007)

    Article  ADS  Google Scholar 

  15. Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Vandewalle, N., Rondia, S., Mlard, M., van Loon, J., Dowson, A., Vincent-Bonnieu, S.: Influence of the gravity on the discharge of a silo. Granul. Matter 15, 263–273 (2013). doi:10.1007/s10035-013-0403-2

    Article  Google Scholar 

  16. Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80(2), 021–305 (2009)

    Article  Google Scholar 

  17. Garnier, J., Gaudin, C., Springman, S., Culligan, P., Goodings, D., Konig, D., Kutter, B., Phillips, R., Randolph, M., Thorel, L.: Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int. J. Phys. Modell. Geotech. 7(3), 1–23 (2007)

    Article  Google Scholar 

  18. Gue, C., Soga, K., Bolton, M., Thusyanthan, N.: Centrifuge modelling of submarine landslide flows. In: Physical Modelling in Geotechnics-Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, ICPMG 2010, vol. 2, pp. 1113–1118 (2010)

  19. Gue, CS.: Submarine landslide flows simulation through centrifuge modelling. Ph.D. thesis, University of Cambridge (2012)

  20. Guo, X., Peng, C., Wu, W., Wang, Y.: A hypoplastic constitutive model for debris materials. Acta Geotech. 11(6), 1217–1229 (2016). doi:10.1007/s11440-016-0494-0

    Article  Google Scholar 

  21. Imre, B., Laue, J., Springman, S.: Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the eth geotechnical drum centrifuge. Granul. Matter 12, 267–285 (2010). doi:10.1007/s10035-009-0163-1

    Article  Google Scholar 

  22. Iverson, R.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)

    Article  ADS  Google Scholar 

  23. Iverson, R.: Scaling and design of landslide and debris-flow experiments. Geomorphology 244, 9–20 (2015)

    Article  ADS  Google Scholar 

  24. Jiang, Y., Towhata, I.: Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech. Rock Eng. 46(4), 713–729 (2013)

    Article  ADS  Google Scholar 

  25. Johnson, C., Gray, J.: Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech. 675, 87–116 (2011). doi:10.1017/jfm.2011.2

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Johnson, C., Kokelaar, B., Iverson, R., Logan, M., LaHusen, R., Gray, J.: Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. (2012). doi:10.1029/2011JF002185

    Google Scholar 

  27. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid. Mech. 541(-1), 167 (2005). doi:10.1017/S0022112005005987. http://www.journals.cambridge.org/abstract_S0022112005005987

  28. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–30 (2006). doi:10.1038/nature04801. http://www.ncbi.nlm.nih.gov/pubmed/16760972

  29. Kailey, P.: Debris flows in new zealand alpine catchments. Ph.D. thesis, University of Canterbury February (2013)

  30. Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16(7), 2371–2381 (2004). doi:10.1063/1.1736611

  31. Mathews, J.: Investigation of granular flow using silo centrifuge models. Ph.D. thesis, University of Natural Resources and Life Sciences, Vienna (2013)

  32. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Pudasaini, S., Dominik, B.: Energy considerations in accelerating rapid shear granular flows. Nonlinear Process. Geophys. 19, 399–407 (2009)

    Article  ADS  Google Scholar 

  34. Schofield, A.: Cambridge geotechnical centrifuge operations. Géotechnique 30(3), 227–268 (1980). doi:10.1680/geot.1980.30.3.227

    Article  Google Scholar 

  35. Simons, T., Combarros-Garcia, M., Gupta, P., Tuzun, U., Zigan, S., Sun, J., Schilling, M., Bensmann, S., Zetzener, H., Feise, H., Kwade, A., Kleine-Jaeger, F., Ooi, J.: Segregation and mixing of granular material in industrial processes. In: Bischoff, M., Onate, E., Owen, D., Ramm, E., Wriggers, P. (eds.) III International Conference on Particle-based Methods Fundamentals and Applications. Particles (2013)

  36. Taylor R (1995) Geotechnical Centrifuge Technology. Blackie Academic & Professional. http://books.google.co.uk/books?id=pMAOAAAAQAAJ

  37. Thielicke, W., Stamhuis, E.: Pivlab- towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Softw. (2014). doi:10.5334/jors.bl

    Google Scholar 

  38. Tropea, C., Yarin, A., Foss, J.: Springer Handbook of Experimental Fluid Mechanics, vol. 1. Springer, Berlin (2007)

    Book  Google Scholar 

  39. Vallejo, L., Estrada, N., Taboada, A., Caicedo, B., Silva, J.: Numerical and physical modeling of granular flow. In: Ng, C., Wang, Y., Zhang, L. (eds.) Physical Modelling in Geotechnics. Taylor & Francis, Milton Park (2006). doi:10.1201/NOE0415415866.ch207

    Google Scholar 

  40. Wood, D.: Geotechnical Modelling, vol. 1. CRC Press, Boca Raton (2003)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results is performed as part of the MUMOLADE project, receiving funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n\(^{\circ }\) 289911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Cabrera.

Ethics declarations

Conflict of interest

All the authors acknowledge that this study contains original material, as a result of a purely academic study. Its publication has been approved by all coauthors and tacitly by the responsible authorities at the institutes where the work has been carried out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, M.A., Wu, W. Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field. Granular Matter 19, 78 (2017). https://doi.org/10.1007/s10035-017-0764-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0764-z

Keywords

Navigation