Skip to main content

Advertisement

Log in

Insights into the water retention behaviour of GMZ bentonite pellet mixture

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Bentonite pellets are recognized as good buffer/backfill materials for sealing technological voids in high-level radioactive waste (HLW) repository. Compared to that of a traditional compacted bentonite block, one of the most important particularities of this material is the initially discrete pellets and the inevitable heterogeneous porosity formed, leading to a distinctive water retention behaviour. In this paper, water retention and mercury intrusion porosimetry (MIP) tests were conducted on pellet mixture (constant volume), single pellet (free swelling) and compacted block (constant volume) of GMZ bentonite, water retention properties and pore structure evolutions of the specimens were comparatively investigated. Results show that the water retention properties of the three specimens are almost similar to each other in the high suction range (> 10 MPa), while the water retention capacity of pellet mixture is lower than those of the compacted block and single pellet in the low suction range (< 10 MPa). Based on the capillary water retention theory (the Young–Laplace equation), a new concept ‘saturated void ratio’ that was positively related to water content and dependent on pore size distribution of the specimen was defined. Then, according to the product of saturated void ratio and water density in saturated void, differences of water retention properties for the three specimens at low suctions were explained. Meanwhile, MIP tests indicate that as suction decreases, the micro- and macrovoid ratios of pellet mixture and compacted block decrease as the mesovoid ratio increases, while all the void ratios of single pellets increase. This could be explained that upon wetting, water is successively adsorbed into the inter-layer, inter-particle and inter-pellet voids, leading to the subdivision of particles and swelling of aggregates and pellets. Under constant volume condition, aggregates and pellets tend to swell and fill into the inter-aggregates or inter-pellets voids. While under free swelling condition, the particles and aggregates in a single pellet tend to swell outward rather than squeezing into the inter-aggregate voids, leading to the expansion of the pores and even formation of cracks. Results including the effects of initial conditions (initial dry density and fabric) and constraint conditions (constant volume or free swelling) on the water retention capacity and pore structure evolution reached in this work are of great importance in designing of engineering barrier systems for the HLW repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alonso EE, Hoffmann C, Romero E (2011) Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study. Géotechnique 61(4):329–344. https://doi.org/10.1680/geot.2011.61.4.329

    Article  Google Scholar 

  2. Andreasen AHM, Andersen J (1930) Relation between grain size and interstitial space in products of unconsolidated granules. Kolloid-Zeitschrift 50:217–228

    Article  Google Scholar 

  3. Bahramian Y, Bahramian A, Javadi A (2017) Confined fluids in clay interlayers: a simple method for density and abnormal pore pressure interpretation. Colloids Surf A 521:260–271. https://doi.org/10.1016/j.colsurfa.2016.08.021

    Article  Google Scholar 

  4. Bensch JJ, Brynard HJ (1972) New approach to density measurements using Archimedes’s principle. Nat Phys Sci 239(93):96–96. https://doi.org/10.1038/physci239096a0

    Article  Google Scholar 

  5. Bernachy-Barbe F, Conil N, Guillot W, Talandier J (2020) Observed heterogeneities after hydration of MX-80 bentonite under pellet/powder form. Appl Clay Sci 189:105542. https://doi.org/10.1016/j.clay.2020.105542

    Article  Google Scholar 

  6. Blatz JA, Cui YJ, Oldecop L (2008) Vapour equilibrium and osmotic technique for suction control. Geotech Geol Eng 26:661–673. https://doi.org/10.1007/s10706-008-9196-1

    Article  Google Scholar 

  7. Blümling P, Adams J (2008) Grimsel test site investigation phase IV: borehole sealing. Nagra technical report 07-01, Wettingen, Switzerland

  8. Chen L, Liu YM, Wang J, Cao SF, Xie JL, Ma LK, Zhao XG, Li YW, Liu J (2014) Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test. Eng Geol 172:57–68. https://doi.org/10.1016/j.enggeo.2014.01.008

    Article  Google Scholar 

  9. Darde B, Roux JN, Pereira JM, Dangla P, Talandier T, Vu MN, Tang AM (2020) Investigating the hydromechanical behaviour of bentonite pellets by swelling pressure tests and discrete element modelling. Acta Geotech. https://doi.org/10.1007/s11440-020-01040-5(inpress)

    Article  Google Scholar 

  10. Delage P, Howat M, Cui YJ (1998) The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50(1–2):31–48. https://doi.org/10.1016/S0013-7952(97)00083-5

    Article  Google Scholar 

  11. Delage P, Cui YJ (2008) An evaluation of the osmotic method of controlling suction. Geomech Geoeng 3(1):1–11. https://doi.org/10.1080/17486020701868379

    Article  Google Scholar 

  12. Della Vecchia G, Dieudonne AC, Jommi C, Charlier R (2015) Accounting for evolving pore size distribution in water retention models for compacted clays. Int J Numer Anal Methods Geomech 39(7):702–723. https://doi.org/10.1002/nag.2326

    Article  Google Scholar 

  13. Dixon D, Sandén T, Jonsson E, Hansen J (2011) Backfilling of deposition tunnels: use of bentonite pellets. Svensk Kärnbränslehantering AB, SKB P-11-44, Stockholm

  14. Dupray F, Laloui L (2016) Numerical analysis of canister movements in an engineered barrier system. Acta Geotech 11:145–159. https://doi.org/10.1007/s11440-014-0347-7

    Article  Google Scholar 

  15. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532. https://doi.org/10.1139/t94-061

    Article  Google Scholar 

  16. Gatabin C, Talandier J, Collin F, Charlier R, Dieudonné AC (2016) Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Appl Clay Sci 121–122:57–62. https://doi.org/10.1016/j.clay.2015.12.019

    Article  Google Scholar 

  17. Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19. https://doi.org/10.1002/ppsc.200601009

    Article  Google Scholar 

  18. Hoffmann C, Alonso EE, Romero E (2007) Hydro-mechanical behaviour of bentonite pellet mixtures. Phys Chem Earth Parts A/B/C 32(8–14):832–849. https://doi.org/10.1016/j.pce.2006.04.037

    Article  Google Scholar 

  19. Imbert C, Villar MV (2006) Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl Clay Sci 32(3–4):197–209. https://doi.org/10.1016/j.clay.2006.01.005

    Article  Google Scholar 

  20. Jacinto AC, Villar MV, Gómez-Espina R, Ledesma A (2009) Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites. Appl Clay Sci 42(3–4):575–582. https://doi.org/10.1016/j.clay.2008.04.001

    Article  Google Scholar 

  21. Jia LY, Chen YG, Ye WM, Cui LY (2019) Effects of a simulated gap on anisotropic swelling pressure of compacted GMZ bentonite. Eng Geol 248:155–163. https://doi.org/10.1016/j.enggeo.2018.11.018

    Article  Google Scholar 

  22. Khorshidi M, Lu N, Akin ID, Likos WJ (2017) Intrinsic relationship between specific surface area and soil water retention. J Geotech Geoenviron Eng 143(1):04016078. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001572

    Article  Google Scholar 

  23. Khorshidi M, Lu N (2017) Intrinsic relation between soil water retention and cation exchange capacity. J Geotech Geoenviron Eng 143(4):04016119. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001633

    Article  Google Scholar 

  24. Liu ZR (2019) Investigation on the packing behaviour and thermal-hydraulic properties of GMZ bentonite pellet mixtures. Tongji University, Shanghai

    Google Scholar 

  25. Liu ZR, Ye WM, Zhang Z, Wang Q, Chen YG, Cui YJ (2019) Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets. Powder Technol 351:92–101. https://doi.org/10.1016/j.powtec.2019.03.038

    Article  Google Scholar 

  26. Liu ZR, Cui YJ, Ye WM, Chen B, Wang Q, Chen YG (2020) Investigation of the hydro-mechanical behaviour of GMZ bentonite pellet mixtures. Acta Geotech 15(10):2865–2875. https://doi.org/10.1007/s11440-020-00976-y

    Article  Google Scholar 

  27. Liu ZR, Cui YJ, Ye WM, Zhang Z, Wang Q, Chen B (2020) Investigation on vibration induced segregation behaviour of crushed GMZ bentonite pellet mixtures. Constr Build Mater 241:117949. https://doi.org/10.1016/j.conbuildmat.2019.117949

    Article  Google Scholar 

  28. Lu N (2016) Generalized soil water retention equation for adsorption and capillarity. J Geotech Geoenviron Eng 142(10):04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524

    Article  Google Scholar 

  29. Molinero-Guerra A, Mokni N, Delage P, Cui YJ, Tang AM, Aimedieu P, Bernier F, Bornert M (2017) In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite. Appl Clay Sci 135:538–546. https://doi.org/10.1016/j.clay.2016.10.030

    Article  Google Scholar 

  30. Molinero-Guerra A, Aimedieu P, Bornert M, Cui YJ, Tang AM, Sun Z, Mokni N, Delage P, Bernier F (2018) Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography. Appl Clay Sci 165:164–169. https://doi.org/10.1016/j.clay.2018.07.043

    Article  Google Scholar 

  31. Molinero-Guerra A, Cui YJ, Mokni N, Delage P, Bornert M, Aimedieu P, Tang AM, Bernier F (2018) Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column. Eng Geol 243:18–25. https://doi.org/10.1016/j.enggeo.2018.06.006

    Article  Google Scholar 

  32. Molinero-Guerra A, Cui YJ, He Y, Delage P, Mokni N, Tang AM, Aimedieu P, Bornert M, Bernier F (2019) Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture. Eng Geol 248:14–21. https://doi.org/10.1016/j.enggeo.2018.11.005

    Article  Google Scholar 

  33. Molinero-Guerra A, Delage P, Cui YJ, Mokni N, Tang AM, Aimedieu P, Bernier F, Bornert M (2020) Water-retention properties and microstructure changes of a bentonite pellet upon wetting/drying; application to radioactive waste disposal. Géotechnique 70(3):199–209. https://doi.org/10.1680/jgeot.17.P.291

    Article  Google Scholar 

  34. Mokni N, Barnichon JD, Dick P, Nguyen TS (2016) Effect of technological macro voids on the performance of compacted bentonite/sand seals for deep geological repositories. Int J Rock Mech Min Sci 88:87–97. https://doi.org/10.1016/j.ijrmms.2016.07.011

    Article  Google Scholar 

  35. Navarro V, Asensio L, Gharbieh H, De la Morena G, Pulkkanen VM (2020) A triple porosity hydro-mechanical model for MX-80 bentonite pellet mixtures. Eng Geol 265:105311. https://doi.org/10.1016/j.enggeo.2019.105311

    Article  Google Scholar 

  36. Niu WJ, Ye WM, Song X (2020) Unsaturated permeability of Gaomiaozi bentonite under partially free-swelling conditions. Acta Geotech 15:1095–1124. https://doi.org/10.1007/s11440-019-00788-9

    Article  Google Scholar 

  37. Pintado X, Lloret A, Romero E (2009) Assessment of the use of the vapour equilibrium technique in controlled-suction tests. Can Geotech J 46(4):411–423. https://doi.org/10.1139/T08-130

    Article  Google Scholar 

  38. Pusch R, Bluemling P, Johnson L (2003) Performance of strongly compressed MX-80 pellets under repository-like conditions. Appl Clay Sci 23(1):239–244. https://doi.org/10.1016/S0169-1317(03)00108-X

    Article  Google Scholar 

  39. Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng Geol 54:117–127. https://doi.org/10.1016/S0013-7952(99)00067-8

    Article  Google Scholar 

  40. Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328. https://doi.org/10.1680/geot.2011.61.4.313

    Article  Google Scholar 

  41. Saiyouri N, Tessier D, Hicher PY (2004) Experimental study of swelling in unsaturated compacted clays. Clay Min 39(4):469–479. https://doi.org/10.1180/0009855043940148

    Article  Google Scholar 

  42. Salles F, Beurroies I, Bildstein O, Jullien M, Raynal J, Denoyel R, Van Damme H (2008) A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite. Appl Clay Sci 39:186–201. https://doi.org/10.1016/j.clay.2007.06.001

    Article  Google Scholar 

  43. Salo JP, Kukkola T (1989) Bentonite pellets, an alternative buffer material for spent fuel canister deposition holes. In: Workshop “sealing of radioactive waster repositories”. Braunschweig

  44. Sasanian S, Newson TA (2013) Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents. Eng Geol 158:15–22. https://doi.org/10.1016/j.enggeo.2013.03.002

    Article  Google Scholar 

  45. Seiphoori A, Ferrari A, Laloui L (2014) Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles. Géotechnique 64(9):721–734. https://doi.org/10.1680/geot.14.P.017

    Article  Google Scholar 

  46. Sun HQ, Mašín D, Najser J, Neděla V, Navrátilová E (2020) Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods. Acta Geotech 15:1655–1671. https://doi.org/10.1007/s11440-019-00857-z

    Article  Google Scholar 

  47. Tang AM, Cui YJ (2005) Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can Geotech J 42(1):1–10. https://doi.org/10.1139/t04-082

    Article  MathSciNet  Google Scholar 

  48. Tuller M, Or D, Dudley LM (1999) Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour Res 35(7):1949–1964. https://doi.org/10.1029/1999wr900098

    Article  Google Scholar 

  49. Tuller M, Or D (2005) Water films and scaling of soil characteristic curves at low water contents. Water Resour Res 41(9):W09403. https://doi.org/10.1029/2005WR004142

    Article  Google Scholar 

  50. Van Geet M, Volckaert G, Roels S (2005) The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture. Appl Clay Sci 29(2):73–87. https://doi.org/10.1016/j.clay.2004.12.007

    Article  Google Scholar 

  51. Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12(3):817–820. https://doi.org/10.1063/1.555688

    Article  Google Scholar 

  52. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26(1–4):337–350. https://doi.org/10.1016/j.clay.2003.12.026

    Article  Google Scholar 

  53. Villar MV (2007) Water retention of two natural compacted bentonites. ISO Clay Clay Min 55(3):311–322. https://doi.org/10.1346/CCMN.2007.0550307

    Article  Google Scholar 

  54. Wan M, Ye WM, Chen YG, Cui YJ, Wang J (2015) Influence of temperature on the water retention properties of compacted GMZ01 bentonite. Environ Earth Sci 73(8):4053–4061. https://doi.org/10.1007/s12665-014-3690-y

    Article  Google Scholar 

  55. Wang Q, Tang AM, Cui YJ, Delage P, Barnichon JD, Ye WM (2013) The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture. Soils Found 53:232–245. https://doi.org/10.1016/j.sandf.2013.02.004

    Article  Google Scholar 

  56. Ye WM, Chen YG, Chen B, Wang Q, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116(1–2):12–20. https://doi.org/10.1016/j.enggeo.2010.06.002

    Article  Google Scholar 

  57. Ying Z, Cui YJ, Duc M, Benahmed N, Bessaies-Bey H, Chen B (2020) Salinity effect on the liquid limit of soils. Acta Geotech. https://doi.org/10.1007/s11440-020-01092-7(inpress)

    Article  Google Scholar 

  58. Zhang C, Lu N (2018) Measuring soil-water density by helium pycnometer. J Geotech Geoenviron Eng 144(9):02818002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001929

    Article  Google Scholar 

  59. Zhao NF, Ye WM, Chen B, Chen YG, Cui YJ (2019) Modeling of the swelling–shrinkage behavior of expansive clays during wetting–drying cycles. Acta Geotech 14:1325–1335. https://doi.org/10.1007/s11440-018-0718-6

    Article  Google Scholar 

  60. Zheng Y, Zaoui A (2017) Wetting and nanodroplet contact angle of the clay 2:1 surface: the case of Na-montmorillonite (001). Appl Clay Sci 396:717–722. https://doi.org/10.1016/j.apsusc.2016.11.015

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports of the National Key R&D Program of China (2019YFC1509900), the National Nature Science Foundation of China (42002291 and 42030714) and the China Postdoctoral Science Foundation (2020M671217) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZR., Ye, WM., Cui, YJ. et al. Insights into the water retention behaviour of GMZ bentonite pellet mixture. Acta Geotech. 16, 3145–3160 (2021). https://doi.org/10.1007/s11440-021-01249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01249-y

Keywords

Navigation