Skip to main content
Log in

Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study examined a method for approximating the transversely isotropic (TI) elastic mechanical properties and bedding plane orientations of randomly oriented rock cuttings. Microindentation testing was conducted on multiple rock cuttings with unknown bedding orientations to obtain their experimental indentation moduli. The measured indentation moduli were assumed to be functions of both the bedding orientations and the intrinsic TI mechanical properties of the rock cuttings. This assumption holds due to the anisotropic stress history and preferred horizontal alignment of the rock fabric along the bedding direction, as well as the presence of plate-like clay particles with intrinsic TI mechanical properties. An anisotropic contact mechanics solution was then utilized to predict both the TI elastic mechanical properties and bedding plane orientations of the cuttings using a constrained inverse algorithm that minimizes the error between the predicted indentation modulus (a function of both the predicted elastic constants and the orientation of the cuttings) and the experimental indentation modulus. Several constraints were imposed on the inverse algorithm to mathematically bound the TI stiffness matrix and optimization results. A Monte Carlo simulation was also incorporated into the inverse algorithm to consider the effects of uncertainties in the experimental results. The results obtained from the proposed indentation–inverse algorithm approach show good agreement with the results obtained using non-invasive ultrasonic pulse velocity measurements on a 2.5 cm cube sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Buehler TexMet™ P is a registered trademark of Buehler, Lake Bluff, Illinois, USA.

  2. Hysitron TI-950 Triboindenter® is a registered trademark of the Bruker Corporation, Billerica, Massachusetts USA.

References

  1. Abedi S, Slim M, Hofmann R, Bryndzia T, Ulm FJ (2016) Nanochemo-mechanical signature of organic-rich shales: a coupled indentation-EDX analysis. Acta Geotech. https://doi.org/10.1007/s11440-015-0426-4

    Article  Google Scholar 

  2. Abedi S, Slim M, Ulm F-J (2016) Nanomechanics of organic-rich shales: the role of thermal maturity and organic matter content on texture. Acta Geotech 11(4):775–787. https://doi.org/10.1007/s11440-016-0476-2

    Article  Google Scholar 

  3. Araki H, Hasegawa S (2010) Micro-indentation tests to evaluate micro-scale mechanical properties of granites. Paper presented at the 44th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, Salt Lake City, Utah, 1 Jan 2010

  4. Argatov I, Mishuris G (2018) Indentation testing of biological materials. Springer, Cham. https://doi.org/10.1007/978-3-319-78533-2

    Book  Google Scholar 

  5. Auvray C, Lafrance N, Bartier D (2017) Elastic modulus of claystone evaluated by nano-/micro-indentation tests and meso-compression tests. J Rock Mech Geotech Eng 9(1):84–91. https://doi.org/10.1016/j.jrmge.2016.02.002

    Article  Google Scholar 

  6. Barber JR (1974) Determining the contact area in elastic-indentation problems. J Strain Anal Eng Des 9(4):230–232. https://doi.org/10.1243/03093247V094230

    Article  Google Scholar 

  7. Barnett DM, Lothe J (1975) Dislocations and line charges in anisotropic piezoelectric insulators. Physica Status Solidi (B) 67(1):105–111. https://doi.org/10.1002/pssb.2220670108

    Article  Google Scholar 

  8. Barry B, Klima MS (2013) Characterization of marcellus shale natural gas well drill cuttings. J Unconv Oil Gas Resour. https://doi.org/10.1016/j.juogr.2013.05.003

    Article  Google Scholar 

  9. Boussinesq JV (1885) Application des Potentiels a l’Étude de l’Équilibre et du Mouvement des Solides Élastiques. Mémoires de la Societé des Sciences, de l’Agriculture et des Arts

  10. Bulychev SI, Alekhin SI (1987) Method of kinetic hardness and microhardness in testing impression. Zavod Lab 53(11):1091–1096

    Google Scholar 

  11. Bulychev SI, Alekhin VP, Shorshorov MH, Ternovskii AP (1975) Determining Young’s modulus from the indentor penetration diagram. Zavod Lab 41:1409–1412

    Google Scholar 

  12. Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP (1976) Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression. Strength Mater 8(9):1084–1089. https://doi.org/10.1007/BF01529860

    Article  Google Scholar 

  13. Canady W (2011) A method for full-range young’s modulus correction. Society of Petroleum Engineers—SPE Americas Unconventional Gas Conference 2011, UGC 2011

  14. Chen JJ, Sorelli L, Vandamme M, Ulm F-J, Chanvillard G (2010) A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C–S–H/Ca(OH)2 nanocomposites. J Am Ceram Soc 93(5):1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x

    Article  Google Scholar 

  15. Chen P, Han Q, Ma T, Lin D (2015) The mechanical properties of shale based on micro-indentation test. Pet Explor Dev 42(5):723–732. https://doi.org/10.1016/S1876-3804(15)30069-0

    Article  Google Scholar 

  16. Combal B, Baret F, Weiss M, Trubuil A, Macé D, Pragnère A, Myneni R, Knyazikhin Y, Wang L (2003) Retrieval of canopy biophysical variables from bidirectional reflectance: using prior information to solve the ill-posed inverse problem. Remote Sens Environ 84(1):1–15. https://doi.org/10.1016/S0034-4257(02)00035-4

    Article  Google Scholar 

  17. Constantinides G, Ulm FJ, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36(3):191–196. https://doi.org/10.1617/14020

    Article  Google Scholar 

  18. D2845 A (2008) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. https://doi.org/10.1520/d2845-08

  19. Deirieh A, Ortega JA, Ulm FJ, Abousleiman Y (2012) Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis. Acta Geotech 7(4):271–295. https://doi.org/10.1007/s11440-012-0185-4

    Article  Google Scholar 

  20. Delafargue A, Ulm FJ (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41(26):7351–7360. https://doi.org/10.1016/j.ijsolstr.2004.06.019

    Article  MATH  Google Scholar 

  21. Delbos F, Gilbert JC, Glowinski R, Sinoquet D (2006) Constrained optimization in seismic reflection tomography: a Gauss–Newton augmented Lagrangian approach. Geophys J Int 164(3):670–684. https://doi.org/10.1111/j.1365-246X.2005.02729.x

    Article  Google Scholar 

  22. Dewhurst DN, Sarout J, Delle Piane C, Siggins AF, Raven MD, Kuila U (2010) Prediction of shale mechanical properties from global and local empirical correlations. In: SEG technical program expanded abstracts 2010. Society of Exploration Geophysicists, pp 2595–2599. https://doi.org/10.1190/1.3513380

  23. Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609. https://doi.org/10.1557/JMR.1986.0601

    Article  Google Scholar 

  24. Dong G, Chen P (2017) A comparative experiment investigate of strength parameters for Longmaxi shale at the macro- and mesoscales. Int J Hydrog Energy 42(31):20082–20091. https://doi.org/10.1016/j.ijhydene.2017.05.240

    Article  Google Scholar 

  25. Donnelly E, Baker SP, Boskey AL, Van Der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res Part A 77(2):426–435. https://doi.org/10.1002/jbm.a.30633

    Article  Google Scholar 

  26. Egermann P, Lenormand R, Longeron D, Zarcone C (2005) A fast and direct method of permeability measurements on drill cuttings. SPE Reserv Eval Eng. https://doi.org/10.2118/77563-PA

    Article  Google Scholar 

  27. Espinoza DN, Vandamme M, Dangla P, Pereira JM, Vidal-Gilbert S (2013) A transverse isotropic model for microporous solids: application to coal matrix adsorption and swelling. J Geophys Res Solid Earth 118(12):6113–6123. https://doi.org/10.1002/2013JB010337

    Article  Google Scholar 

  28. Fan M, Jin Y, Chen M, Geng Z (2019) Mechanical characterization of shale through instrumented indentation test. J Pet Sci Eng 174:607–616. https://doi.org/10.1016/j.petrol.2018.11.083

    Article  Google Scholar 

  29. Feng P, Dai F, Liu Y, Xu N, Fan P (2018) Effects of coupled static and dynamic strain rates on mechanical behaviors of rock-like specimens containing pre-existing fissures under uniaxial compression. Can Geotech J 55:640–652. https://doi.org/10.1139/cgj-2017-0286

    Article  Google Scholar 

  30. Gautam R, Wong RC (2006) Transversely isotropic stiffness parameters and their measurement in Colorado shale. Can Geotech J 43:1290–1305. https://doi.org/10.1139/t06-083

    Article  Google Scholar 

  31. Goktan RM, Gunes Yılmaz N (2017) Diamond tool specific wear rate assessment in granite machining by means of knoop micro-hardness and process parameters. Rock Mech Rock Eng 50(9):2327–2343. https://doi.org/10.1007/s00603-017-1240-0

    Article  Google Scholar 

  32. Haber E, Horesh L, Tenorio L (2009) Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems. Inverse Probl 26:025002. https://doi.org/10.1088/0266-5611/26/2/025002

    Article  MathSciNet  MATH  Google Scholar 

  33. Hadamard J (1923) Lectures on Cauch’s problem in linear partial differential equations. Yale University Press, New Haven

    MATH  Google Scholar 

  34. Hay JL, Pharr GM (2000) Instrumented indentation testing. ASM Int 8:232–243

    Google Scholar 

  35. Hertz H (1882) Ueber die Berührung fester elastischer Körper. Journal fur die Reine und Angewandte Mathematik 92:156–171. https://doi.org/10.1515/crll.1882.92.156

    Article  MathSciNet  MATH  Google Scholar 

  36. Homem-de-Mello T, Bayraksan G (2014) Monte Carlo sampling-based methods for stochastic optimization. Surv Oper Res Manag Sci 19(1):56–85. https://doi.org/10.1016/j.sorms.2014.05.001

    Article  MathSciNet  Google Scholar 

  37. Horsrud P (2001) Estimating mechanical properties of shale from empirical correlations. SPE Drill Complet. https://doi.org/10.2118/56017-pa

    Article  Google Scholar 

  38. Howarth DF (1984) Apparatus to determine static and dynamic elastic moduli. Rock Mech Rock Eng 17:255–264. https://doi.org/10.1007/BF01032338

    Article  Google Scholar 

  39. Ishida T, Labuz JF, Manthei G, Meredith PG, Nasseri MHB, Shin K, Yokoyama T, Zang A (2017) ISRM suggested method for laboratory acoustic emission monitoring. Rock Mech Rock Eng 50(3):665–674. https://doi.org/10.1007/s00603-016-1165-z

    Article  Google Scholar 

  40. Jäger A, Bader T, De Borst K, Eberhardsteiner J (2011) The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Compos A Appl Sci Manuf 42:677–685. https://doi.org/10.1016/j.compositesa.2011.02.007

    Article  Google Scholar 

  41. Jäger A, Hofstetter K, Buksnowitz C, Gindl-Altmutter W, Konnerth J (2011) Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Compos A Appl Sci Manuf 42(12):2101–2109. https://doi.org/10.1016/j.compositesa.2011.09.020

    Article  Google Scholar 

  42. Jakobsen M, Johansen TA (2000) Anisotropic approximations for mudrocks: a seismic laboratory study. Geophysics 65(6):1711–1725. https://doi.org/10.1190/1.1444856

    Article  Google Scholar 

  43. Johnston JE, Christensen NI (1995) Seismic anisotropy of shales. J Geophys Res 100(B4):5991–6003. https://doi.org/10.1029/95JB00031

    Article  Google Scholar 

  44. Kabanikhin S (2008) Definitions and examples of inverse and ill-posed problems. J Inverse Ill-Posed Probl 16(4):317–357. https://doi.org/10.1515/JIIP.2008.019

    Article  MathSciNet  MATH  Google Scholar 

  45. Li J, Yang S, Guo B, Feng Y, Liu G (2013) Distribution of the sizes of rock cuttings in gas drilling at various depths. CMES Comput Model Eng Sci. https://doi.org/10.3970/cmes.2012.089.079

    Article  Google Scholar 

  46. Li J, Guo B, Yang S, Liu G (2014) The complexity of thermal effect on rock failure in gas-drilling shale-gas wells. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2014.08.011

    Article  Google Scholar 

  47. Lu Y, Li Y, Wu Y, Luo S, Jin Y, Zhang G (2020) Characterization of shale softening by large volume-based nanoindentation. Rock Mech Rock Eng 53(3):1393–1409. https://doi.org/10.1007/s00603-019-01981-8

    Article  Google Scholar 

  48. Martogi D, Abedi S (2019) Indentation based method to determine the mechanical properties of randomly oriented rock cuttings. Paper presented at the 53rd U.S. rock mechanics/geomechanics symposium, New York City, New York, 28 Aug 2019

  49. Martogi D, Abedi S, Saadeh C, Mitchell I (2019) Mechanical properties of drill cuttings based on indentation testing and contact mechanics solutions. Paper presented at the SPE annual technical conference and exhibition, Calgary, Alberta, Canada, 23 Sep 2019

  50. Mashhadian M, Abedi S, Noshadravan A (2018) Probabilistic multiscale characterization and modeling of organic-rich shale poroelastic properties. Acta Geotech. https://doi.org/10.1007/s11440-018-0652-7

    Article  Google Scholar 

  51. Meyers AG, Hunt SP, Behr S, Frick R (2005) Point load testing of drill cuttings for the determination of rock strength. Paper presented at the Alaska Rocks 2005, The 40th U.S. symposium on rock mechanics (USRMS), Anchorage, Alaska, 1 Jan 2005

  52. Mirotchnik K, Kryuchkov S, Strack K (2018) A novel method to determine NMR petrophysical parameters from drill cuttings. In: SPWLA 45th annual logging symposium 2004

  53. Monfared S, Laubie H, Radjai F, Hubler M, Pellenq R, Ulm F-J (2018) A methodology to calibrate and to validate effective solid potentials of heterogeneous porous media from computed tomography scans and laboratory-measured nanoindentation data. Acta Geotech 13(6):1369–1394. https://doi.org/10.1007/s11440-018-0687-9

    Article  Google Scholar 

  54. Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100(B7):12431–12447. https://doi.org/10.1029/94jb03097

    Article  Google Scholar 

  55. Nejati M, Dambly MLT, Saar MO (2019) A methodology to determine the elastic properties of anisotropic rocks from a single uniaxial compression test. J Rock Mech Geotech Eng 11(6):1166–1183. https://doi.org/10.1016/j.jrmge.2019.04.004

    Article  Google Scholar 

  56. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus (Young’s modulus). J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  57. Ortega JA (2010) Microporomechanical modeling of shale. In: Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge

  58. Ortega JA, Ulm F-J, Abousleiman Y (2007) The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotech 2(3):155–182. https://doi.org/10.1007/s11440-007-0038-8

    Article  Google Scholar 

  59. Pereyra M, Schniter P, Chouzenoux E, Pesquet J, Tourneret J, Hero AO, McLaughlin S (2016) A survey of stochastic simulation and optimization methods in signal processing. IEEE J Sel Top Signal Process 10(2):224–241. https://doi.org/10.1109/JSTSP.2015.2496908

    Article  Google Scholar 

  60. Plona TJ, Cook JM (1995) Effects of stress cycles on static and dynamic Young’s moduli in Castlegate sandstone. Paper presented at the 35th U.S. symposium on rock mechanics (USRMS), Reno, Nevada, 1 Jan 1995

  61. Podio AL, Gregory AR, Gray KE (1968) Dynamic properties of dry and water-saturated green river shale under stress. Soc Pet Eng J. https://doi.org/10.2118/1825-pa

    Article  Google Scholar 

  62. Saasen A, Dahl B, Jødestøl K (2013) Particle size distribution of top-hole drill cuttings from norwegian sea area offshore wells. Part Sci Technol. https://doi.org/10.1080/02726351.2011.648824

    Article  Google Scholar 

  63. Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):3-1–3-29. https://doi.org/10.1029/2000rg000089

    Article  MATH  Google Scholar 

  64. Santarelli FJ, Marsala AF, Brignoli M, Rossi E, Bona N (1998) Formation evaluation from logging on cuttings. SPE Reserv Eng (Soc Pet Eng). https://doi.org/10.2118/36851-pa

    Article  Google Scholar 

  65. Shi X, Yang L, Li D, Ding X (2018) Mechanical characterization of Longmaxi marine shale by nanoindentation. Paper presented at the ISRM international symposium—10th Asian rock mechanics symposium, Singapore, 1 Jan 2018

  66. Shorshorov MK, Bulychev SI, Alekhin VP (1987) Work of plastic and elastic deformation during indenter indentation. Sov Phys Dokl 26(769):769–771

    Google Scholar 

  67. Slim M, Abedi S, Bryndzia LT, Ulm F-J (2019) Role of organic matter on nanoscale and microscale creep properties of source rocks. J Eng Mech. https://doi.org/10.1061/(asce)em.1943-7889.0001538

    Article  Google Scholar 

  68. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. https://doi.org/10.1016/0020-7225(65)90019-4

    Article  MathSciNet  MATH  Google Scholar 

  69. Stuckman MY, Edenborn HM, Lopano CL, Hakala JA (2018) Advanced characterization and novel waste management for drill cuttings from marcellus shale energy development. In: Unconventional resources technology conference, Houston, Texas, 23–25 July 2018. https://doi.org/10.15530/urtec-2018-2883168

  70. Stuckman M, Edenborn HM, Lopano C, Hakala JA (2018) Advanced characterization and novel waste management for drill cuttings from Marcellus shale energy development. Paper presented at the SPE/AAPG/SEG unconventional resources technology conference, Houston, Texas, USA, 9 Aug 2018

  71. Swadener JG, Pharr GM (2001) Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 81(2):447–466. https://doi.org/10.1080/01418610108214314

    Article  Google Scholar 

  72. Swadener JG, Rho JY, Pharr GM (2001) Effect of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed Mater Res 57(1):108–112. https://doi.org/10.1002/1097-4636(200110)57:1%3c108:AID-JBM1148%3e3.0.CO;2-6

    Article  Google Scholar 

  73. Takahashi T, Tanaka S (2010) Rock physics model for interpreting dynamic and static Young’s moduli of soft sedimentary rocks. In: ISRM international symposium on 6th Asian rock mechanics symposium, 2010, pp 23–27

  74. Ternovskii AP, Alekhin VP, Shorshorov MK, Khrushchov MM, Skvortsov VN (1973) Micromechanical testing of materials by depression. Zavod Lab 39:1620–1624

    Google Scholar 

  75. The MathWork I (2019) Symbolic Math Toolbox. Natick, Massachusetts, United State. Retrieved from https://www.mathworks.com/help/symbolic/

  76. Uboldi V, Civolani L, Zausa F (1999) Rock strength measurements on cuttings as input data for optimizing drill bit selection. Paper presented at the SPE Annual Technical Conference And Exhibition, Houston, Texas, 1 Jan 1999

  77. Ullemeyer K, Lokajíček T, Vasin RN, Keppler R, Behrmann JH (2018) Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli. Phys Earth Planet Int 275:32–43. https://doi.org/10.1016/j.pepi.2018.01.001

    Article  Google Scholar 

  78. Ulm F-J, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotech 1(2):77–88. https://doi.org/10.1007/s11440-006-0009-5

    Article  Google Scholar 

  79. Vandamme M (2008) The nanogranular origin of concrete creep: a nanoindentation investigation of microstructure and fundamental properties of calcium-silicate-hydrates. In: Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge

  80. Vasconcelos G, Lourenço PB, Alves CAS, Pamplona J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48(5):453–466. https://doi.org/10.1016/j.ultras.2008.03.008

    Article  Google Scholar 

  81. Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57(5):670–751

    Article  Google Scholar 

  82. Vlassak JJ, Nix WD (1993) Indentation modulus of elastically anisotropic half spaces. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 42(8):1223–1245. https://doi.org/10.1080/01418619308224756

    Article  Google Scholar 

  83. Vlassak JJ, Nix WD (1994) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245. https://doi.org/10.1016/0022-5096(94)90033-7

    Article  Google Scholar 

  84. Vlassak JJ, Ciavarella M, Barber JR, Wang X (2003) The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J Mech Phys Solids 51(9):1701–1721. https://doi.org/10.1016/S0022-5096(03)00066-8

    Article  MATH  Google Scholar 

  85. Wang Z (2002) Seismic anisotropy in sedimentary rocks, part 1: a single-plug laboratory method. Geophysics 67(5):1348–1672. https://doi.org/10.1190/1.1512787

    Article  Google Scholar 

  86. Wang Y, Han D-h, Aldin S, Aldin M, Qin X (2018) Static and dynamic Young’s moduli and Poisson’s ratios of Eagle Ford Shale under triaxial tests. In: SEG technical program expanded abstracts 2018. Society of Exploration Geophysicists, pp 3613–3617. https://doi.org/10.1190/segam2018-2998339.1

  87. Willis JR (1966) Hertzian contact of anisotropic bodies. J Mech Phys Solids 14:163–176. https://doi.org/10.1016/0022-5096(66)90036-6

    Article  MathSciNet  MATH  Google Scholar 

  88. Yan F, Han DH, Yao Q (2016) Physical constraints on c 13 and δ for transversely isotropic hydrocarbon source rocks. Geophys Prospect 64:1524–1536. https://doi.org/10.1111/1365-2478.12265

    Article  Google Scholar 

  89. Zausa F, Civolani L, Brignoli M, Santarelli FJ (1997) Real-time wellbore stability analysis at the rig-site. Paper presented at the SPE/IADC drilling conference, Amsterdam, Netherlands, 1 Jan 1997

  90. Zeng Q, Wu Y, Liu Y, Zhang G (2019) Determining the micro-fracture properties of Antrim gas shale by an improved micro-indentation method. J Nat Gas Sci Eng 62:224–235. https://doi.org/10.1016/j.jngse.2018.12.013

    Article  Google Scholar 

  91. Zhang F, Guo H, Hu D, Shao J-F (2018) Characterization of the mechanical properties of a claystone by nano-indentation and homogenization. Acta Geotech 13(6):1395–1404. https://doi.org/10.1007/s11440-018-0691-0

    Article  Google Scholar 

  92. Zhao J, Zhang D, Wu T, Tang H, Xuan Q, Jiang Z, Dai C (2019) Multiscale approach for mechanical characterization of organic-rich shale and its application. Int J Geomech 19(1):04018180. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001281

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the use of the Materials Characterization Facility at Texas A&M University and thank Dr. Wilson Serem for his technical assistance. We also thank the US Department of Energy (Award DE-FE0031579) and the Halliburton Sperry team for sponsoring this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Abedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martogi, D., Abedi, S. Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings. Acta Geotech. 15, 3511–3524 (2020). https://doi.org/10.1007/s11440-020-01020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01020-9

Keywords

Navigation