Skip to main content
Log in

ISRM Suggested Method for Laboratory Acoustic Emission Monitoring

  • ISRM Suggested Method
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Benson PM, Vinciguerra S, Meredith PG, Young RP (2008) Laboratory simulation of volcano seismicity. Science 332(10):249–252

    Article  Google Scholar 

  • Boler FM, Spetzler HA, Getting IC (1984) Capacitance transducer with a point-like probe for receiving acoustic emissions. Rev Sci Instrum 55(8):1293–1297

    Article  Google Scholar 

  • Chen LH, Labuz JF (2006) Indentation of rock by wedge-shaped tools. Int J Rock Mech Min Sci 43:1022–1033

    Google Scholar 

  • Davi R, Vavryčuk V, Charalampidou E, Kwiatek G (2013) Network sensor calibration for retrieving accurate moment tensors of acoustic emissions. Int J Rock Mech Min Sci 62:59–67

    Google Scholar 

  • Fakhimi A, Carvalho F, Ishida T, Labuz JF (2002) Simulation of failure around a circular opening in rock. Int J Rock Mech Min Sci 39:507–515

    Article  Google Scholar 

  • Glaser SD, Weiss GG, Johnson LR (1998) Body waves recorded inside an elastic half-space by an embedded, wideband velocity sensor. J Acoust Soc Am 104:1404–1412

    Article  Google Scholar 

  • Goebel THW, Becker TR, Schorlemmer D, Stanchits S, Sammins C, Rybacki E, Dresen G (2012) Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J Geophys Res 117:B03310

    Article  Google Scholar 

  • Goodfellow S, Young R (2014) A laboratory acoustic emission experiment under in situ conditions. Geophys Res Lett 41:3422–3430

    Article  Google Scholar 

  • Graham CC, Stanchits S, Main IG, Dresen G (2010) Source analysis of acoustic emission data: a comparison of polarity and moment tensor inversion methods. Int J Rock Mech Min Sci 47:161–169

    Article  Google Scholar 

  • Grosse CU, Ohtsu M (eds) (2008) Acoustic emission testing. Springer, Berlin

    Google Scholar 

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy and acceleration. Bull Seismol Soc Am 32:163–191

    Google Scholar 

  • Hardy HR Jr (1994) Geotechnical field applications of AE/MS techniques at the Pennsylvania State University: a historical review. NDT&E Int 27(4):191–200

    Article  Google Scholar 

  • Heap MJ, Baud P, Meredith PG, Bell AF, Main IG (2009) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res 114:B07203

    Article  Google Scholar 

  • Hardy HR Jr (2003) Acoustic emission/microseismic activity, vol 1. Principles, Techniques and Geotechnical Applications. Balkema/CRC Press, ISBN 9789058091932

  • Ishida T, Chen Q, Mizuta Y, Roegiers J-C (2004) Influence of fluid viscosity on the hydraulic fracturing mechanism. J Energy Resour Technol Trans ASME 126:190–200

    Article  Google Scholar 

  • Ishida T, Aoyagi K, Niwa T, Chen Y, Murata S, Chen Q, Nakayama Y (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophys Res Lett 39:L16309

    Article  Google Scholar 

  • Kaiser J (1953) Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Arch Eisenhüttenwes 24:43–45

    Article  Google Scholar 

  • Kanagawa T, Nakasa H (1978) Method of estimating ground pressure. US Patent No. 4107981

  • Kanagawa T, Hayashi M, Nakasa H (1976) Estimation of spatial components in rock samples using the Kaiser effect of acoustic emission. CRIEPI (Central Research Institute of Electric Power Industry) Report, E375004

  • Kao C-S, Carvalho FCS, Labuz JF (2011) Micromechanisms of fracture from acoustic emission. Int J Rock Mech Min Sci 48:666–673

    Article  Google Scholar 

  • Kasahara K (1981) Earthquake mechanics. Cambridge University Press, Cambridge, p 248

    Google Scholar 

  • Kusunose K, Nishizawa O (1986) AE gap prior to local fracture of rock under uniaxial compression. J Phys Earth 34(Supplement):S45–S56

    Article  Google Scholar 

  • Kwiatek G, Plenkers K, Dresen G, JAGUARS Research Group (2011) Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations. Bull Seismol Soc Am 101:2592–2608

    Article  Google Scholar 

  • Kwiatek G, Charalampidou E, Dresen G, Stanchits S (2014) An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle. Int J Rock Mech Min Sci 65:153–161

    Google Scholar 

  • Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40:151–171

    Article  Google Scholar 

  • Lei X, Nishizawa O, Kusunose K, Satoh T (1992) Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes. J Phys Earth 40:617–634

    Article  Google Scholar 

  • Lei X, Kusunose K, Satoh T, Nishizawa O (2003) The hierarchical rupture process of a fault: an experimental study. Phys Earth Planet Inter 137:213–228

    Article  Google Scholar 

  • Lockner DA (1993) Role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Soc Geomech Abstr 30:884–899

    Google Scholar 

  • Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi-static fault growth and shear fracture energy in granite. Nature 350:39–42

    Article  Google Scholar 

  • Manthei G (2005) Characterization of acoustic emission sources in rock salt specimen under triaxial compression. Bull Seismol Soc Am 95(5):1674–1700

    Article  Google Scholar 

  • McLaskey G, Glaser S (2012) Acoustic emission sensor calibration for absolute source measurements. J Nondestruct Eval 31:157–168

    Article  Google Scholar 

  • McLaskey G, Kilgore B, Lockner D, Beeler N (2014) Laboratory generated M-6 earthquakes. Pure Appl Geophys 171:2601–2615

    Article  Google Scholar 

  • Mogi K (1962a) Study of the elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst Tokyo Univ 40:125–173

    Google Scholar 

  • Mogi K (1962b) Magnitude-frequency relation for elastic shocks accompanying fracture of various materials and some related to problems in earthquakes. Bull Earthquake Res Inst Tokyo Univ 40:831–853

    Google Scholar 

  • Mogi K (1968) Source locations of elastic shocks in the fracturing process in rocks (1). Bull Earthquake Res Inst Tokyo Univ 46:1103–1125

    Google Scholar 

  • Mogi K (2006) Experimental rock mechanics. Taylor & Francis, London

    Google Scholar 

  • Nakayama Y, Inoue A, Tanaka M, Ishida T, Kanagawa T (1993) A laboratory experiment for development of acoustic methods to investigate condition changes induced by excavation around a chamber. Proc Third Int Symp Rockburst Seism Mines, Kingston, pp 383–386

    Google Scholar 

  • Nasseri MHB, Mohanty B, Young RP (2006) Fracture toughness measurements and acoustic emission activity in brittle rocks. Pure Appl Geophys 163:917–945

    Article  Google Scholar 

  • Nasseri MHB, Goodfellow SD, Lombos L, Young RP (2014) 3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments. Int J Rock Mech Min Sci 69:1–18

    Google Scholar 

  • Nishizawa O, Onai K, Kusunose K (1984) Hypocenter distribution and focal mechanism of AE events during two stress stage creep in Yugawara andesite. Pure Appl Geophys 112:36–52

    Google Scholar 

  • Obert L, Duvall WI (1945) Microseismic method of predicting rock failure in underground mining “Part II, Laboratory experiments”, RI 3803, USBM

  • Ohtsu M, Ono K (1986) The generalized theory and source representations of acoustic emission. J Acoust Emiss 5(4):124–133

    Google Scholar 

  • Proctor T (1982) An improved piezoelectric acoustic emission transducer. J Acoust Soc Am 71:1163–1168

    Article  Google Scholar 

  • Salamon MDG, Wiebols GA (1974) Digital location of seismic events by an underground network of seismometers using the arrival times of compressional waves. Rock Mech 6(2):141–166

    Article  Google Scholar 

  • Scholz CH (1968a) The frequency-magnitude relation of microfracturing in rock and its relation to earthquake. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Scholz CH (1968b) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73(4):1417–1432

    Article  Google Scholar 

  • Scholz CH (1968c) Experimental study of the fracturing process in brittle rock. J Geophys Res 73(4):1447–1454

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sellers EJ, Kataka MO, Linzer LM (2003) Source parameters of acoustic emission events and scaling with mining. J Geophys Res 108(B9):2418–2433

    Article  Google Scholar 

  • Shah KR, Labuz JF (1995) Damage mechanisms in stressed rock from acoustic emission. J Geophys Res 100(B8):15527–15539

    Article  Google Scholar 

  • Shearer PM (2009) Introduction to seismology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Spetzler H, Sobolev G, Koltsov A, Zang A, Getting IC (1991) Some properties of unstable slip on rough surfaces. Pure Appl Geophys 137:95–112

    Article  Google Scholar 

  • Stanchits S, Mayr S, Shapiro S, Dresen G (2011) Fracturing of porous rock induced by fluid injection. Tectonophysics 503(1–2):129–145

    Article  Google Scholar 

  • Stanchits S, Surdi A, Gathogo P, Edelman E, Suarez-Rivera R (2014) Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements. Rock Mech Rock Eng 47(5):1521–1532

    Article  Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, Malden

    Google Scholar 

  • Stierle E, Vavryčuk V, Kwiatek G, Charalampidou E, Bohnhoff M (2016) Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy. Geophys J Int 205:38–50

    Article  Google Scholar 

  • Terada M, Yanagidani T, Ehara S (1984) AE rate controlled compression test of rocks. In: Hardy HR Jr, Leighton FW (eds) Proceedings of third conference on acoustic emission/microseismic activity in geologic structure and materials. Trans Tech Publication, University Park, pp 159–171

    Google Scholar 

  • Thompson BD, Young RP, Lockner DA (2005) Observations of premonitory acoustic emission on slip nucleation during a stick slip experiment in smooth faulted Westerly granite. Geophys Res Lett 32:L10304

    Article  Google Scholar 

  • Thompson BD, Young RP, Lockner DA (2006) Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation. Pure Appl Geophys 163:995–1019

    Article  Google Scholar 

  • Xiao Y, Feng X, Hudson JA, Chen B, Feng G, Liu J (2016) ISRM suggested method for in situ microseismic monitoring of the fractured process in rock masses. Rock Mech Rock Eng 49:843–869

    Google Scholar 

  • Yanagidani T, Ehara S, Nishizawa O, Kusunose K, Terada M (1985) Localization of dilatancy in Ohshima granite under constant uniaxial stress. J Geophys Res 90(B8):6840–6858

    Article  Google Scholar 

  • Yoshimitsu N, Kawakata H, Takahashi N (2014) Magnitude-7 level earthquakes: a new lower limit of self-similarity in seismic scaling relationship. Geophys Res Lett 41:4495–4502

    Article  Google Scholar 

  • Zang A, Wagner FC, Dresen G (1996) Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophys Res 101(B8):17507–17521

    Article  Google Scholar 

  • Zang A, Wagner FC, Stanchits S, Dresen G, Andresen R, Haidekker MA (1998) Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int 135:1113–1130

    Article  Google Scholar 

  • Zang A, Wagner FC, Stanchits S, Janssen C, Dresen G (2000) Fracture process zone in granite. J Geophys Res 105(B10):23651–23661

    Article  Google Scholar 

  • Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci 35(3):291–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Ishida.

Additional information

Please send any written comments on this Suggested method to Prof. Resat Ulusay, President of the ISRM Commission on Testing Methods, Hacettepe University, Department of Geological Engineering, 06800 Beytepe, Ankara, Turkey. E-mail: resat@hacettepe.edu.tr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, T., Labuz, J.F., Manthei, G. et al. ISRM Suggested Method for Laboratory Acoustic Emission Monitoring. Rock Mech Rock Eng 50, 665–674 (2017). https://doi.org/10.1007/s00603-016-1165-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1165-z

Navigation