Skip to main content
Log in

Nanochemo-mechanical signature of organic-rich shales: a coupled indentation–EDX analysis

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The organic–inorganic nature of organic-rich source rocks poses several challenges for the development of functional relations that link mechanical properties with geochemical composition. With this focus in mind, we herein propose a method that enables chemo-mechanical characterization of this highly heterogeneous source rock at the micron and submicron length scale through a statistical analysis of a large array of energy-dispersive X-ray spectroscopy (EDX) data coupled with nanoindentation data. The ability to include elemental composition to the indentation probe via EDX is shown to provide a means to identify pure material phases, mixture phases, and interfaces between different phases. Employed over a large array, the statistical clustering of this set of chemo-mechanical data provides access to the properties of the fundamental building blocks of clay-dominated organic-rich source rocks. The versatility of the approach is illustrated through the application to a large number of source rocks of different origin, chemical composition, and organic content. We find that the identified properties exhibit a unique scaling relation between stiffness and hardness. This suggests that organic-rich shale properties can be reduced to their elementary constituents, with several implications for the development of predictive functional relations between chemical composition and mechanical properties of organic-rich source rocks such as the intimate interplay between clay-packing, organic maturity, and mechanical properties of porous clay/organic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, Stewart KL, Shahsavari R, Jagannathan D, Brommer DB, Baronnet A, Buehler MJ, Yip S, Ulm F-J, Van Vliet KJ, Pellenq RJ-M (2014) Combinatorial molecular optimization of cement hydrates. Nat Commun. doi:10.1038/ncomms5960

    Google Scholar 

  2. Ahmadov R, Vanorio T, Mavko G (2009) Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov formation. Lead Edge 28(1):18–23. doi:10.1190/1.3064141

    Article  Google Scholar 

  3. Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech 10(1):1–14

    Article  Google Scholar 

  4. Bennett RH, O’Brien NR, Hulbert MH (1991) Determinants of clay and shale microfabric signatures: processes and mechanisms. In: Bennet RH, O’Brien NR, Hulbert MH (eds) Microstructure of fine grained sediments: from mud to shale. Springer, New York, pp 5–32

    Chapter  Google Scholar 

  5. Bobko CP (2008) Assessing the mechanical microstructure of shale by nanoindentation: the link between mineral composition and mechanical properties. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge

  6. Bobko CP, Gathier B, Ortega JA, Ulm F-J, Borges L, Abousleiman YN (2011) The nanogranular origin of friction and cohesion in shale—a strength homogenization approach to interpretation of nanoindentation results. Int J Numer Anal Methods Geomech 35(17):1854–1876. doi:10.1002/nag.984

    Article  Google Scholar 

  7. Bobko C, Ulm F-J (2008) The nano-mechanical morphology of shale. Mech Mater 40(4–5):318–337. doi:10.1016/j.mechmat.2007.09.006

    Article  Google Scholar 

  8. Bustin RM (2012) Shale gas and shale oil petrology and petrophysics. Int J Coal Geol 103:1–2. doi:10.1016/j.coal.2012.09.003

    Article  Google Scholar 

  9. Chen JJ, Sorelli L, Vandamme M, Ulm F-J, Chanvillard G (2010) A coupled nanoindentation/SEM–EDS study on low water/cement ratio portland cement paste: evidence for C–S–H/Ca(OH)2 nanocomposites. J Am Ceram Soc 93(5):1484–1493. doi:10.1111/j.1551-2916.2009.03599.x

    Google Scholar 

  10. Constantinides G, Ravi Chandran KS, Ulm F-J, Van Vliet KJ (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng A 430:189–202. doi:10.1016/j.msea.2006.05.125

    Article  Google Scholar 

  11. Constantinides G, Ulm F-J (2007) The nanogranular nature of C–S–H. J Mech Phys Solids 55(1):64–90. doi:10.1016/j.jmps.2006.06.003

    Article  MATH  Google Scholar 

  12. Deirieh A (2011) Statistical nano-chemo-mechanical assessment of shale by wave dispersive spectroscopy and nanoindentation. S. M. dissertation, Massachusetts Institute of Technology, Cambridge

  13. Deirieh A, Ortega JA, Ulm F-J, Abousleiman Y (2012) Nanochemomechanical assessment of shale: a coupled WDS–indentation analysis. Acta Geotech 7:271–295. doi:10.1007/s11440-012-0185-4

    Article  Google Scholar 

  14. Delafargue A, Ulm F-J (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indentation. Int J Solids Struct 41:7351–7360. doi:10.1016/j.ijsolstr.2004.06.019

    Article  MATH  Google Scholar 

  15. Dilks A, Graham SC (1985) Quantitative mineralogical characterization of sandstones by back-scattered electron image analysis. J Sediment Petrol 55(3):347–355. doi:10.1306/212F86C5-2B24-11D7-8648000102C1865D

    Google Scholar 

  16. Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A 77(2):426–435

    Article  Google Scholar 

  17. Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, Chichester. doi:10.1002/0470032006

    Book  MATH  Google Scholar 

  18. Fitzgerald JJ, Hamza AI, Bronnimann CE, Dec SF (1989) Solid-state 27 Al and 29 Si NMR studies of the reactivity of the aluminum-containing clay mineral kaolinite. Solid State Ion 32–33(1):378–388

    Article  Google Scholar 

  19. Fraley C, Raftery AE (1999) MCLUST: software for model-based cluster analysis. J Classif 16:297–306. doi:10.1007/s003579900058

    Article  MATH  Google Scholar 

  20. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631. doi:10.1198/016214502760047131

    Article  MathSciNet  MATH  Google Scholar 

  21. Fraley C, Raftery AE (2007) Model-based methods of classification: using the mclust software in chemometrics. J Stat Softw 18:1–13. doi:10.1360/jos180001

    Article  Google Scholar 

  22. Friel JJ, Lyman ChE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12(1):2–25. doi:10.1017/S1431927606060211

    Article  Google Scholar 

  23. Goldstein J, Newbury DE, Joy D, Lyman Ch, Echlin P, Lifshin E, Sawyer L, Michael J (2007) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, Berlin

    Google Scholar 

  24. Hantal G, Brochard B, Laubie H, Ebrahimi D, Pellenq RJ-M, Ulm F-J, Coasne B (2014) Atomic-scale modelling of elastic and failure properties of clays. Mol Phys 112:1294–1305. doi:10.1080/00268976.2014.897393

    Article  Google Scholar 

  25. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59(10):1570–1583. doi:10.1190/1.1443546

    Article  Google Scholar 

  26. Hughes JJ, Trtik P (2004) Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type. Mater Charact 53(2–4):223–231. doi:10.1016/j.matchar.2004.08.014

    Article  Google Scholar 

  27. Jin L, Rother G, Cole DR, Mildner DFR, Duffy CJ, Brantley SL (2011) Characterization of deep weathering and nanoporosity development in shale—a neutron study. Am Mineral 96(4):498–512. doi:10.2138/am.2011.3598

    Article  Google Scholar 

  28. Keller LM, Holzer L, Wepf R, Gasser P (2011) 3D geometry and topology of pore pathways in Opalinus clay: implications for mass transport. Appl Clay Sci 52(1–2):85–95. doi:10.1016/j.clay.2011.02.003

    Article  Google Scholar 

  29. King HE, Eberle APR, Walters CC, Kliewer CE, Ertas D, Huynh C (2015) Pore architecture and connectivity in gas shale. Energy Fuels 29:1375–1390

    Article  Google Scholar 

  30. Krakowiak K, Wilson W, James S, Musso S, Ulm F-J (2015) Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: application to cement-based materials. Cem Concr Res 67:271–285. doi:10.1016/j.cemconres.2014.09.001

    Article  Google Scholar 

  31. Krinsley DH (1998) Back-scattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Kuila U, McCarty DK, Derkowski A, Fischer TB, Topór T, Prasad M (2014) Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 135:359–373. doi:10.1016/j.fuel.2014.06.036

    Article  Google Scholar 

  33. Lonardelli I, Wenk H-R, Ren Y (2007) Preferred orientation and elastic anisotropy in shales. Geophysics 72(2):D33–D40. doi:10.1190/1.2435966

    Article  Google Scholar 

  34. Loucks RG, Reed RM, Ruppel SC, Hammes U (2012) Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull 96(6):1071–1098

    Article  Google Scholar 

  35. Luffel D, Guidry F (1989) Core analysis results comprehensive study wells devonian shales: Topical report July 1989. Technical report Restech Houston, Inc

  36. Luffel DL, Guidry FK (1992) New core analysis methods for measuring reservoir rock properties of Devonian shale. J Petrol Technol 44(11):1184–1190. doi:10.2118/20571-PA

    Article  Google Scholar 

  37. Luffel DL, Guidry FK, Curtis JB (1992) Evaluation of Devonian shale with new core and log analysis methods. J Petrol Technol 44(11):1192–1197. doi:10.2118/21297-PA

    Article  Google Scholar 

  38. Mavko G, Mukerji T, Dvorkin J (2009) Rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Mba K, Prasad M, Batzle M (2010) The maturity of organic-rich shales using microimpedance analysis. SPE annual technical conference and exhibition, Florence, September 19–22, SPE 135569. doi:10.2118/135569-MS

  40. McGee JJ, Keil K (2001) Application of electron probe microanalysis to the study of geological and planetary materials. Microsc Microanal 7(02):200–210

    Google Scholar 

  41. Mitchell JK (2005) Fundamentals of soil behavior, 3rd edn. Wiley, Hoboken

    Google Scholar 

  42. Newbury DE, Bright DS (1999) Logarithmic 3-band color encoding: a robust method for display and comparison of compositional maps in electron probe X-ray microanalysis. Microsc Microanal 5(5):333–343. doi:10.1017/S1431927699000161

    Article  Google Scholar 

  43. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20. doi:10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  44. Ortega JA (2010) Microporomechanical modeling of shale. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge

  45. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys Res Lett 29(8):13-1–13-4. doi:10.1029/2001GL014054

    Article  Google Scholar 

  46. Prasad M, Mukerji T (2003) Analysis of microstructural textures and wave propagation characteristics in shales. SEG annual meeting, 26–31 October, Dallas, Texas

  47. Prasad M, Mukerji T, Reinstaedler M, Arnold W (2009) Acoustic signatures, impedance microstructure, textural scales, and anisotropy of kerogen-rich shales. SPE annual technical conference and exhibition, 4–7 October, New Orleans, Louisiana. doi:10.2118/124840-MS

  48. Randall NX, Vandamme M, Ulm F-J (2009) Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. Mater Res Soc 24(3):679–690. doi:10.1557/jmr.2009.0149

    Article  Google Scholar 

  49. Reed SJB (2006) Electron microprobe analysis and scanning electron microscopy in geology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  50. Tovey NK, Krinsley DH (1991) Mineralogical mapping of scanning electron micrographs. Sediment Geol 75(1–2):109–123. doi:10.1016/0037-0738(91)90053-G

    Article  Google Scholar 

  51. Tovey NK, Krinsley DH, Dent DL, Corbett WM (1992) Techniques to quantitatively study the microfabric of soils. Geoderma 53(3–4):217–235. doi:10.1016/0016-7061(92)90056-D

    Article  Google Scholar 

  52. Ulm F-J, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotech 1(2):77–88. doi:10.1007/s11440-006-0009-5

    Article  Google Scholar 

  53. Ulm F-J, Delafargue A, Constantinides G (2005) Experimental microporomechanics. In: Dormieux L, Ulm F-J (eds) Applied micromechanics of porous materials. Springer, Wien, pp 207–288

    Chapter  Google Scholar 

  54. Ulm F-J, Vandamme M, Bobko CP, Ortega JA, Tai K, Ortiz C (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90(9):2677–2692. doi:10.1111/j.1551-2916.2007.02012.x

    Article  Google Scholar 

  55. Vernik L, Landis C (1996) Elastic anisotropy of source rocks: implications for hydrocarbon generation and primary migration. AAPG Bull 80(4):531–544

    Google Scholar 

  56. Vernik L, Nur A (1992) Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57:727–735

    Article  Google Scholar 

  57. Voltolini M, Wenk H-R, Mondol NH, Bjorlykke K, Jahren J (2009) Anisotropy of experimentally compressed kaolinite–illite–quartz mixtures. Geophysics 74(1):D13–D23. doi:10.1190/1.3002557

    Article  Google Scholar 

  58. World Energy Council (2007) Survey of energy resources. Technical report. World Energy Council

  59. Zargari S, Prasad M, Mba K, Mattson E (2011) Organic maturity, hydrous pyrolysis, and elastic property in shales. Canadian unconventional resources conference, Calgary, November 15–17, SPE 149403. doi:10.2118/149403-MS

  60. Zhang G, Wei Z, Ferrell RE (2009) Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl Clay Sci 43(2):271–281. doi:10.1016/j.clay.2008.08.010

    Article  Google Scholar 

  61. Zhang G, Wei Z, Ferrell RE, Guggenheim S, Cygan RT, Luo J (2010) Evaluation of the elasticity normal to the basal plane of non-expandable 2:1 phyllosilicate minerals by nanoindentation. Am Mineral 95(5–6):863–869. doi:10.2138/am.2010.3398

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the X-Shale project, an industry–academia partnership between MIT, Shell and Schlumberger enabled through MIT’s Energy Initiative. Shell and Schlumberger provided all the samples used in this study. The experimental results were obtained at X-Hub lab at MIT: https://cshub.mit.edu. The data supporting Figs. 9, 10, and 11 are available in Tables 1, 2, 3, and 4. The authors are grateful to Dr. Nicola Ferralis from MIT for fruitful discussions. Thanks to Amer Deirieh for providing SEM images of Haynesville shale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Abedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, S., Slim, M., Hofmann, R. et al. Nanochemo-mechanical signature of organic-rich shales: a coupled indentation–EDX analysis. Acta Geotech. 11, 559–572 (2016). https://doi.org/10.1007/s11440-015-0426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0426-4

Keywords

Navigation