Skip to main content
Log in

Recent advances for the production of hydrocarbon biofuel via deoxygenation progress

  • Review
  • Materials Science
  • Published:
Science Bulletin

An Erratum to this article was published on 23 January 2016

Abstract

The current world energy crisis and increasing environmental concerns over global climate change from combusting fossil fuel are driving researchers into a new route to produce fuels via sustainable resource to meet the demands of human. In recent years, deoxygenation as an alternative method has been applied in the production of hydrocarbon fuels, particularly via the deoxygenation of fatty acids and triglycerides from seed oils and fats, producing hydrocarbon fuels entirely fungible with fossil fuels. The deoxygenation of biobased feedstock to fuel-like hydrocarbons is critically reviewed in this article. The review mainly discusses the use of feedstock, innovation of catalysts, and the reaction mechanism involved in the production of hydrocarbon fuels via deoxygenation progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Li HJ, Li LL, Zhang R et al (2014) Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23:732–741

    Article  Google Scholar 

  2. Qiang LU, Zhu XF, Li WZ et al (2009) On-line catalytic upgrading of biomass fast pyrolysis products. Chin Sci Bull 54:1941–1948

    Google Scholar 

  3. Taufiqurrahmi N, Bhatia S (2011) Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy Environ Sci 4:1087–1112

    Article  Google Scholar 

  4. Li XQ, Tong DM, Hu CW (2015) Efficient production of biodiesel from both esterification and transesterification over supported SO4 2−-MoO3-ZrO2-Nd2O3/SiO2 catalysts. J Energy Chem 24:463–471

    Article  Google Scholar 

  5. Li J, Liu J, Ren L et al (2014) Selective oxidation of ethane to aldehydes over SBA-15 supported molybdenum catalyst. J Energy Chem 23:609–615

    Article  Google Scholar 

  6. Immer JG, Kelly MJ, Lamb HH (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A Gen 375:134–139

    Article  Google Scholar 

  7. Peng BX, Zhao C, Kasakov S et al (2013) Manipulating catalytic pathways: deoxygenation of palmitic acid on multifunctional catalysts. Chem Eur J 19:4732–4741

    Article  Google Scholar 

  8. Gosselink RW, Hollak SAW, Chang SW et al (2013) Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem 9:1576–1594

    Article  Google Scholar 

  9. Liu YH, Yao L, Xin H et al (2015) The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Appl Catal B Environ 174–175:504–514

    Article  Google Scholar 

  10. Kubickova I, Snare M, Eranen K et al (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106:197–200

    Article  Google Scholar 

  11. Nivetha S, Roy DV (2013) Effect of natural and synthetic antioxidants on oxidative stability of FAMEs obtained from hevea brasiliensis. J Energy Chem 22:935–941

    Article  Google Scholar 

  12. Boda L, Onyestyák G, Solt H et al (2010) Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Appl Catal A Gen 374:158–169

    Article  Google Scholar 

  13. Zhen B, Jiao QZ, Wu Q et al (2014) Catalytic performance of acidic ionic liquid-functionalized silica in biodiesel production. J Energy Chem 23:97–104

    Article  Google Scholar 

  14. Morgan T, Grubb D, Santillan-Jimenez E et al (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53:820–829

    Article  Google Scholar 

  15. Şenol Oİ, Viljava TR, Krause AOI (2005) Hydrodeoxygenation of methyl esters on sulphided NiMo/γ–Al2O3 and CoMo/γ–Al2O3 catalysts. Catal Today 100:331–335

    Article  Google Scholar 

  16. Chen JX, Shi H, Li L et al (2014) Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Appl Catal B Environ 144:870–884

    Article  Google Scholar 

  17. Intarapong P, Iangthanarat S, Phanthong P et al (2013) Activity and basic properties of KOH/mordenite for transesterification of palm oil. J Energy Chem 22:690–700

    Article  Google Scholar 

  18. Peroni M, Mancino G, Baráth E et al (2016) Bulk and γ-Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid. Appl Catal B Environ 180:301–311

    Article  Google Scholar 

  19. Yang YX, Ochoa-Hernandez C, O’Shea VAD et al (2012) Ni2P/SBA-15 as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate inton-octadecane. ACS Catal 2:592–598

    Article  Google Scholar 

  20. Snare M, Kubickova I, Maki-Arvela P et al (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87:933–945

    Article  Google Scholar 

  21. Kwon KC, Mayfield H, Marolla T et al (2011) Catalytic deoxygenation of liquid biomass for hydrocarbon fuels. Renew Energy 36:907–915

    Article  Google Scholar 

  22. Monnier J, Sulimma H, Dalai A et al (2010) Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl Catal A Gen 382:176–180

    Article  Google Scholar 

  23. Madsen AT, Ahmed EH, Christensen CH et al (2011) Hydrodeoxygenation of waste fat for diesel production: study on model feed with Pt/alumina catalyst. Fuel 90:3433–3438

    Article  Google Scholar 

  24. He Z, Wang XQ (2014) Required catalytic properties for alkane production from carboxylic acids: hydrodeoxygenation of acetic acid. J Energy Chem 22:883–894

    Article  Google Scholar 

  25. Hari TK, Yaakob Z (2015) CoFe/γ-gamma catalyst for the hydrotreatment of fatty acid methyl esters (FAME). Chem Lett 44:1237–1239

    Article  Google Scholar 

  26. Bezergianni S, Dimitriadis A, Kalogianni A et al (2012) The conversion of stearic acid by deoxygenation progress over M/Al2O3 (with M = Ni, Pt, Cu and Pd) catalysts. J Phys Chem 86:1199–1203

    Google Scholar 

  27. Simakova IL, Simakova OA, Romanenko AV et al (2008) Hydrogenation of vegetable oils over pd on nanocomposite carbon catalysts. Ind Eng Chem Res 47:7219–7225

    Article  Google Scholar 

  28. Simakova I, Rozmysłowicz B, Simakova O et al (2011) Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels. Top Catal 54:460–466

    Article  Google Scholar 

  29. Han JX, Sun H, Ding YQ et al (2010) Palladium-catalyzed decarboxylation of higher aliphatic esters: towards a new protocol to the second generation biodiesel production. Green Chem 12:463–467

    Article  Google Scholar 

  30. Al-Sabawi M, Chen J (2012) Hydroprocessing of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuels 26:5373–5399

    Article  Google Scholar 

  31. Kubicka D, Kaluza L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 372:199–208

    Article  Google Scholar 

  32. Šimáček P, Kubička D, Kubičková I et al (2011) Premium quality renewable diesel fuel by hydroprocessing of sunflower oil. Fuel 90:2473–2479

    Article  Google Scholar 

  33. Priecel P, Kubicka D, Capek L et al (2011) The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts. Appl Catal A Gen 397:127–137

    Article  Google Scholar 

  34. Simacek P, Kubicka D, Sebor G et al (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89:611–615

    Article  Google Scholar 

  35. Botas JA, Serrano DP, García A et al (2014) Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5. Appl Catal B Environ 145:205–215

    Article  Google Scholar 

  36. Botas JA, Serrano DP, Garcia A et al (2012) Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite. Catal Today 195:59–70

    Article  Google Scholar 

  37. Al Alwan B, Salley SO, Ng KYS (2014) Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-SBA-15: effect of fractional sum of metal electronegativities. Appl Catal A Gen 48:558–566

    Google Scholar 

  38. Gong S, Shinozaki A, Shi M et al (2012) Hydrotreating of jatropha oil over alumina based catalysts. Energy Fuels 26:2394–2399

    Article  Google Scholar 

  39. Liu S, Zhu Q, Guan Q et al (2015) Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour Technol 183:93–100

    Article  Google Scholar 

  40. Wang C, Tian Z, Wang L et al (2012) One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes. ChemSusChem 51:974–1983

    Google Scholar 

  41. Duan JZ, Han JX, Sun H et al (2012) Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catal Commun 17:76–80

    Article  Google Scholar 

  42. Han JX, Duan JZ, Chen P et al (2011) Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chem 13:2561

    Article  Google Scholar 

  43. Achten WMJ, Verchot L, Franken YJ et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  Google Scholar 

  44. Gong SF, Shinozaki A, Qian WE (2012) Role of support in hydrotreatment of jatropha oil over sulfided NiMo catalysts. Ind Eng Chem Res 51:13953–13960

    Article  Google Scholar 

  45. Zhang Y, Dube MA, McLean DD et al (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  Google Scholar 

  46. Bezergianni S, Kalogianni A, Dimitriadis A (2012) Catalyst evaluation for waste cooking oil hydroprocessing. Fuel 93:638–641

    Article  Google Scholar 

  47. Bezergianni S, Dimitriadis A, Kalogianni A et al (2011) Toward hydrotreating of waste cooking oil for biodiesel production. Effect of pressure, H2/oil ratio, and liquid hourly space velocity. Ind Eng Chem Res 50:3874–3879

    Article  Google Scholar 

  48. Bezergianni S, Dimitriadis A, Sfetsas T et al (2010) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101:7658–7660

    Article  Google Scholar 

  49. Bezergianni S, Dimitriadis A, Kalogianni A et al (2010) Hydrotreating of waste cooking oil for biodiesel production. Part I: effect of temperature on product yields and heteroatom removal. Bioresour Technol 101:6651–6656

    Article  Google Scholar 

  50. Bezergianni S, Kalogianni A (2009) Hydrocracking of used cooking oil for biofuels production. Bioresour Technol 100:3927–3932

    Article  Google Scholar 

  51. Peng BX, Yuan XQ, Zhao C et al (2012) Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. J Am Chem Soc 134:9400–9405

    Article  Google Scholar 

  52. Kim YS, Yun GN, Lee YK (2014) Novel Ni2P/zeolite catalysts for naphthalene hydrocracking to BTX. Catal Commun 45:133–138

    Article  Google Scholar 

  53. Bui P, Cecilia JA, Oyama ST et al (2012) Studies of the synthesis of transition metal phosphides and their activity in the of a biofuel model compound. J Catal 294:184–198

    Article  Google Scholar 

  54. Victoria ML, Whiffen, Kevin JS et al (2012) The influence of citric acid on the synthesis and activity of high surface area MoP for the hydrodeoxygenation of 4-methylphenol. Appl Catal A Gen 419–420:111–125

    Google Scholar 

  55. Moon JS, Lee YK (2015) Support effects of Ni2P catalysts on the hydrodeoxygenation of guaiacol: in situ XAFS studies. Top Catal 58:211–218

    Article  Google Scholar 

  56. Oyama ST, Gott T, Zhao H et al (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107

    Article  Google Scholar 

  57. Fu J, Lu X, Savage PE (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4:481–486

    Article  Google Scholar 

  58. Na J, Yi B, Han J et al (2012) Deoxygenation of microalgal oil into hydrocarbon with precious metal catalysts: optimization of reaction conditions and supports. Energy 47:25–30

    Article  Google Scholar 

  59. Sun K, Wilson AR, Thompson ST et al (2015) Catalytic deoxygenation of octanoic acid over supported palladium: effects of particle size and alloying with gold. ACS Catal 5:1939–1948

    Article  Google Scholar 

  60. Chen R, Xie Y, Zhou Y et al (2014) Production of hydrogen-rich gas and multi-walled carbon nanotubes from ethanol decomposition over molybdenum modified Ni/MgO catalysts. J Energy Chem 23:244–250

    Article  Google Scholar 

  61. Siew KW, Lee HC, Gimbun J et al (2014) Characterization of La-promoted Ni/Al2O3 catalysts for hydrogen production from glycerol dry reforming. J Energy Chem 23:15–21

    Article  Google Scholar 

  62. Alipour Z, Rezaei M, Meshkani F (2014) Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane. J Energy Chem 23:633–638

    Article  Google Scholar 

  63. Liu Y, Sotelo-Boyas R, Murata K et al (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids. Energy Fuels 25:4675–4685

    Article  Google Scholar 

  64. Hernandez-Paredes J, Glossman-Mitnik D, Esparza-Ponce HE et al (2008) Band structure, optical properties and infrared spectrum of glycine-sodium nitrate crystal. J Mol Struct 875:295–301

    Article  Google Scholar 

  65. Ruiz PE, Frederick BG, De Sisto WJ et al (2012) Guaiacol hydrodeoxygenation on MoS2 catalysts: influence of activated carbon supports. Catal Commun 27:44–48

    Article  Google Scholar 

  66. Kubicka D, Bejblova M, Vlk J (2009) Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts. Top Catal 53:168–178

    Article  Google Scholar 

  67. Kubicka D, Horacek J (2011) Deactivation of HDS catalysts in deoxygenation of vegetable oils. Appl Catal A Gen 394:9–17

    Article  Google Scholar 

  68. Veriansyah B, Han JY, Kim SK et al (2012) Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94:578–585

    Article  Google Scholar 

  69. Oyama S (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216:343–352

    Article  Google Scholar 

  70. Lee YK, Shu Y, Oyama ST (2007) Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT. Appl Catal A Gen 322:191–204

    Article  Google Scholar 

  71. Oyama ST, Gott T, Asakura K et al (2009) In situ FTIR and XANES studies of thiophene hydrodesulfurization on Ni2P/MCM-41. J Catal 268:209–222

    Article  Google Scholar 

  72. Zhao H, Oyama S, Freund HJ et al (2015) Nature of active sites in Ni2P hydrotreating catalysts as probed by iron substitution. Appl Catal B Environ 164:204–216

    Article  Google Scholar 

  73. Moon JS, Kim EG, Lee YK (2014) Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: a joint XAFS and DFT study. J Catal 311:144–152

    Article  Google Scholar 

  74. Berenblyum AS, Podoplelova TA, Shamsiev RS et al (2011) On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina. Pet Chem 51:336–341

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21303109) and the Application Foundation Program of Sichuan Province (2013JY0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xin, H., Du, X. et al. Recent advances for the production of hydrocarbon biofuel via deoxygenation progress. Sci. Bull. 60, 2096–2106 (2015). https://doi.org/10.1007/s11434-015-0971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0971-0

Keywords

Navigation