Skip to main content
Log in

Support Effects of Ni2P Catalysts on the Hydrodeoxygenation of Guaiacol: In Situ XAFS Studies

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The hydrodeoxygenation (HDO) of guaiacol was investigated over SiO2, ZrO2, and active carbon (AC) supported Ni2P catalysts. The physical properties of the catalysts were analyzed by temperature-programmed reduction (H2-TPR), CO-uptake chemisorption, and N2 physisorption. X-ray diffraction and extended X-ray adsorption fine structure spectroscopy were used to obtain structural properties for the supported Ni2P catalysts. The HDO was tested in a batch reactor at 573 K and 30 atm. The Ni2P/SiO2 catalyst underwent a decrease in the HDO conversion from 87 to 30 % for the first and second run of reaction. However, the Ni2P/ZrO2 and Ni2P/AC catalysts showed a little low but stable HDO conversions of 72 and 46 %, respectively. The in situ XAFS analysis revealed that differently from the cases of Ni2P/ZrO2 or and Ni2P/AC catalysts, the local structure of the Ni2P on SiO2 support underwent an oxidation to form nickel phosphate during the reaction, demonstrating that the SiO2 based Ni2P was vulnerable to the water or hydroxyl group of the reactant due to the hydrophilic nature of SiO2 support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal B 199:147–190

    Article  CAS  Google Scholar 

  2. Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295

    Article  CAS  Google Scholar 

  3. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catal Today 171:1–13

    Article  CAS  Google Scholar 

  4. Gayubo AG, Aguayo AT, Atuxtxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Ind Eng Chem Res 43:2619–2626

    Article  CAS  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  6. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo Catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101:239–245

    Article  CAS  Google Scholar 

  7. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol. Part II: support effect for CoMoS catalysts on HDO activity and selectivity. Appl Catal B 101:246–255

    Article  CAS  Google Scholar 

  8. Gevert BS, Otterstedt JE, Massoth FE (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31:119–131

    Article  CAS  Google Scholar 

  9. Dupont C, Lemeur R, Daudin A, Raybaud P (2011) Hydrodeoxygenation pathways catalyzed by MoS2 and NiMoS active phases: a DFT study. J Catal 279:276–286

    Article  CAS  Google Scholar 

  10. Popov A, Kondratieva E, Mariey L, Goupil JM, El Fallah J, Gilson JP, Travert A, Maugé F (2013) Bio-oil hydrodeoxygenation: adsorption of phenolic compounds on sulfided (Co)Mo catalysts. J Catal 297:176–186

    Article  CAS  Google Scholar 

  11. Şenol OI, Ryymin EM, Viljava TR, Krause AOI (2007) Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. J Mol Catal A-Chem 277:107–112

    Article  Google Scholar 

  12. Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B 98:213–223

    Article  CAS  Google Scholar 

  13. Romero Y, Richard F, Renème Y, Brunet S (2009) Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst. Appl Catal A 353:46–53

    Article  CAS  Google Scholar 

  14. Ferrari M, Maggi R, Delmon B, Grange P (2001) Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/carbon catalyst. J Catal 198:47–55

    Article  CAS  Google Scholar 

  15. Ferrari M, Delmon B, Grange P (2002) Influence of the impregnation order of molybdenum and cobalt in carbon-supported catalysts for hydrodeoxygenation reactions. Carbon 40:497–511

    Article  CAS  Google Scholar 

  16. Gutierrez A, Kaila RK, Honkela M, Slioor R, Krause AOI (2009) Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal Today 147:239–246

    Article  CAS  Google Scholar 

  17. Ardiyanti AR, Gutierrez A, Honkela ML, Krause AOI, Heeres HJ (2011) Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts. Appl Catal A 407:56–66

    Article  CAS  Google Scholar 

  18. Wang W, Yang Y, Luo H, Hu T, Liu W (2011) Amorphous Co-Mo-B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catal Comm 12:436–440

    Article  CAS  Google Scholar 

  19. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen JS, Wang Y (2013) Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57

    Article  CAS  Google Scholar 

  20. Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280:8–16

    Article  CAS  Google Scholar 

  21. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalys. J Catal 281:21–29

    Article  CAS  Google Scholar 

  22. Kim YT, Dumesic JA, Huber GW (2013) Aqueous-phase hydrodeoxygenation of sorbitol: a comparative study of Pt/Zr phosphate and PtReOx/C. J Catal 304:72–85

    Article  CAS  Google Scholar 

  23. Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao H, Li D, Rodríguez-Castellón E, Jiménez López A (2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal 294:184–198

    Article  CAS  Google Scholar 

  24. De La Puente G, Gil A, Pis JJ, Grange P (1999) Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts. Langmuir 15:5800–5806

    Article  Google Scholar 

  25. Laurent E, Delmon B (1994) Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. I. Catalytic reaction schemes. Appl Catal A 109:77–96

    Article  CAS  Google Scholar 

  26. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  27. Laurent E, Delmon B (1994) Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalyst. II. Influence of water, ammonia and hydrogen sulfide. Appl Catal A 109:97–115

    Article  CAS  Google Scholar 

  28. Laurent E, Delmon B (1994) Influence of water in the deactivation of a sulfided NiMo γ-Al2O3 catalyst during hydrodeoxygenation. J Catal 146(281–285):288–291

    Google Scholar 

  29. Moon JS, Kim EG, Lee YK (2014) Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: a joint XAFS and DFT study. J Catal 311:144–152

    Article  CAS  Google Scholar 

  30. Centeno A, Laurent E, Delmon B (1995) Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-Type Molecules. J Catal 154:288–298

    Article  CAS  Google Scholar 

  31. Wu SK, Lai PC, Lin YC, Wan HP, Lee HT, Chang YH (2013) Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts. ACS Sustainable Chem Eng 1:349–358

    Article  CAS  Google Scholar 

  32. Nimmanwudipong T, Aydin C, Lu J, Runnebaum RC, Brodwater KC, Browning ND, Block DE, Gates BC (2012) Selective hydrodeoxygenation of guaiacol catalyzed by platinum supported on magnesium oxide. Catal Lett 142:1190–1196

    Article  CAS  Google Scholar 

  33. Gevert BS, Otterstedt JE, Massoth FE (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31:119–131

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B: Condens Matter 47:558–561

    Article  CAS  Google Scholar 

  35. Lee YK, Oyama ST (2006) Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies. J Catal 239:376–389

    Article  CAS  Google Scholar 

  36. Oyama ST, Wang X, Lee YK, Chun WJ (2004) Active phase of Ni2P/SiO2 in hydroprocessing reactions. J Catal 221:263–273

    Article  CAS  Google Scholar 

  37. Seo HR, Cho KS, Lee YK (2011) Formation mechanisms of Ni2P nanocrystals using XANES and EXAFS spectroscopy. Mater. Sci. Eng B 176:132–140

    Article  CAS  Google Scholar 

  38. Zhuravelev LT (2000) The surface chemistry of amorphous silica Zhuravlev model. Colloids Surf B 173:1–38

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by NRF (2012R1A1A2008651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Kul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, JS., Lee, YK. Support Effects of Ni2P Catalysts on the Hydrodeoxygenation of Guaiacol: In Situ XAFS Studies. Top Catal 58, 211–218 (2015). https://doi.org/10.1007/s11244-015-0362-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0362-4

Keywords

Navigation