Skip to main content
Log in

Stimuli-responsive polymeric materials for human health applications

  • Invited Review
  • Materials Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Stimuli-responsive polymers have the extraordinary ability to change their physical and/or chemical state after they “detect” a change in their environment; their response depends dramatically on their chemical composition. This property has been used for a plethora of applications; this review highlights their utility for human health. Specifically, this review will highlight efforts in the areas of sensing and biosensing, antimicrobial/antifouling coatings, tissue engineering and regenerative medicine, and drug delivery. Specific examples are given in each of these areas, with some focus on our work engineering poly(N-isopropylacrylamide)-based microgels and other responsive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sui ZJ, King WJ, Murphy WL (2008) Protein-based hydrogels with tunable dynamic responses. Adv Funct Mater 18:1824–1831

    Article  Google Scholar 

  2. Islam MR, Li X, Smyth K et al (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330–10333

    Article  Google Scholar 

  3. Islam MR, Serpe MJ (2013) Label-free detection of low protein concentration in solution using a novel colorimetric assay. Biosens Bioelectron 49:133–138

    Article  Google Scholar 

  4. Islam MR, Serpe MJ (2013) Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution. Chem Commun 49:2646–2648

    Article  Google Scholar 

  5. Islam MR, Serpe MJ (2013) Penetration of polyelectrolytes into charged poly(N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules 46:1599–1606

    Article  Google Scholar 

  6. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40:670–678

    Article  Google Scholar 

  7. Xu Y, Pharand L, Wen Q et al (2011) Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid Polym Sci 289:659–666

    Article  Google Scholar 

  8. Anderson DG, Burdick JA, Langer R (2004) Materials science. Smart biomaterials. Science 305:1923–1924

    Article  Google Scholar 

  9. Ehrick JD, Deo SK, Browning TW et al (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4:298–302

    Article  Google Scholar 

  10. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  Google Scholar 

  11. Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100:5413–5418

    Article  Google Scholar 

  12. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  13. Miyata T, Jige M, Nakaminami T et al (2006) Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci USA 103:1190–1193

    Article  Google Scholar 

  14. Nayak S, Lee H, Chmielewski J et al (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259

    Article  Google Scholar 

  15. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339

    Article  Google Scholar 

  16. Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25

    Article  Google Scholar 

  17. Sharma AC, Jana T, Kesavamoorthy R et al (2004) A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc 126:2971–2977

    Article  Google Scholar 

  18. Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45:1446–1449

    Article  Google Scholar 

  19. Sorrell CD, Carter MCD, Serpe MJ (2011) A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. ACS Appl Mater Interfaces 3:1140–1147

    Article  Google Scholar 

  20. Sorrell CD, Carter MCD, Serpe MJ (2011) Color tunable poly (N-isopropylacrylamide)-co-acrylic acid microgel-Au hybrid assemblies. Adv Funct Mater 21:425–433

    Article  Google Scholar 

  21. Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 36:9929–9934

    Article  Google Scholar 

  22. Wu C (1998) A comparison between the “coil-to-globule” transition of linear chains and the “volume phase transition” of spherical microgels. Polymer 39:4609–4619

    Article  Google Scholar 

  23. Wu C, Zhou SQ (1996) Internal motions of both poly(N-isopropylacrylamide) linear chains and spherical microgel particles in water. Macromolecules 29:1574–1578

    Article  Google Scholar 

  24. Zhang QM, Xu W, Serpe MJ (2014) Optical devices constructed from multiresponsive microgels. Angew Chem Int Ed 53:4827–4831

    Article  Google Scholar 

  25. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550

    Article  Google Scholar 

  26. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20:2123–2133

    Article  Google Scholar 

  27. Sorrell CD, Serpe MJ (2011) Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons. Adv Mater 23:4088–4092

    Article  Google Scholar 

  28. Islam MR, Johnson KC, Serpe MJ (2013) Microgel-based etalon coated quartz crystal microbalances for detecting solution pH: the effect of Au overlayer thickness. Anal Chim Acta 792:110–114

    Article  Google Scholar 

  29. Islam MR, Li X, Smyth K et al (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330–10333

    Article  Google Scholar 

  30. Parasuraman D, Leung E, Serpe MJ (2012) Poly(N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid Polym Sci 290:1053–1064

    Article  Google Scholar 

  31. Parasuraman D, Sarker AK, Serpe MJ (2012) Poly(N-Isopropylacrylamide)-based microgels and their assemblies for organic-molecule removal from water. ChemPhysChem 13:2507–2515

    Article  Google Scholar 

  32. Parasuraman D, Sarker AK, Serpe MJ (2013) Recyclability of poly(N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid Polym Sci 291:1795–1802

    Article  Google Scholar 

  33. Parasuraman D, Serpe MJ (2011) Poly(N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. ACS Appl Mater Interfaces 3:4714–4721

    Article  Google Scholar 

  34. Parasuraman D, Serpe MJ (2011) Poly(N-isopropylacrylamide) microgels for organic dye removal from water. ACS Appl Mater Interfaces 3:2732–2737

    Article  Google Scholar 

  35. Sorrell CD, Serpe MJ (2012) Glucose sensitive poly(N-isopropylacrylamide) microgel based etalons. Anal Bioanal Chem 402:2385–2393

    Article  Google Scholar 

  36. Hoare T, Pelton R (2008) Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24:1005–1012

    Article  Google Scholar 

  37. Sivakumaran D, Maitland D, Hoare T (2011) Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12:4112–4120

    Article  Google Scholar 

  38. Campbell SB, Patenaude M, Hoare T (2013) Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14:644–653

    Article  Google Scholar 

  39. Hoare T, Santamaria J, Goya GF et al (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657

    Article  Google Scholar 

  40. Sivakumaran D, Maitland D, Oszustowicz T et al (2013) Tuning drug release from smart microgel-hydrogel composites via cross-linking. J Colloid Interface Sci 392:422–430

    Article  Google Scholar 

  41. Serpe MJ, Kim J, Lyon LA (2004) Colloidal hydrogel microlenses. Adv Mater 16:184–187

    Article  Google Scholar 

  42. Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513

    Article  Google Scholar 

  43. Keiji KK, Gordon IJG (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105

    Article  Google Scholar 

  44. Islam MR, Serpe MJ (2013) Poly(N-isopropylacrylamide) microgel-based etalons and etalon arrays for determining the molecular weight of polymers in solution. APL Mater 1:052108

    Article  Google Scholar 

  45. Jacobi ZE, Li L, Liu J (2012) Visual detection of lead(II) using a label-free DNA-based sensor and its immobilization within a monolithic hydrogel. Analyst 137:704–709

    Article  Google Scholar 

  46. Helwa Y, Dave N, Froidevaux R et al (2012) Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl Mater Interfaces 4:2228–2233

    Article  Google Scholar 

  47. MacLean JL, Morishita K, Liu J (2013) DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels. Biosens Bioelectron 48:82–86

    Article  Google Scholar 

  48. Murosaki T, Noguchi T, Kakugo A et al (2009) Antifouling activity of synthetic polymer gels against cyprids of the barnacle (Balanus amphitrite) in vitro. Biofouling 25:313–320

    Article  Google Scholar 

  49. Rasmussen K, Willemsen PR, Østgaard K (2002) Barnacle settlement on hydrogels. Biofouling 18:177–191

    Article  Google Scholar 

  50. Xie L, Hong F, He C et al (2011) Coatings with a self-generating hydrogel surface for antifouling. Polymer 52:3738–3744

    Article  Google Scholar 

  51. Hong F, Xie LY, He CX et al (2013) Effects of hydrolyzable comonomer and cross-linking on anti-biofouling terpolymer coatings. Polymer 54:2966–2972

    Article  Google Scholar 

  52. Katsuyama Y, Kurokawa T, Kaneko T et al (2002) Inhibitory effects of hydrogels on the adhesion, germination, and development of zoospores originating from laminaria angustata. Macromol Biosci 2:163–169

    Article  Google Scholar 

  53. Hong F, Xie LY, He CX et al (2013) Novel hybrid anti-biofouling coatings with a self-peeling and self-generated micro-structured soft and dynamic surface. J Mater Chem B 1:2048–2055

    Article  Google Scholar 

  54. Ju H, McCloskey BD, Sagle AC et al (2009) Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Membr Sci 330:180–188

    Article  Google Scholar 

  55. Telford AM, James M, Meagher L et al (2010) Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS Appl Mater Interfaces 2:2399–2408

    Article  Google Scholar 

  56. Hong F, Xie L, He C et al (2013) Novel hybrid anti-biofouling coatings with a self-peeling and self-generated micro-structured soft and dynamic surface. J Mater Chem B 1:2048–2055

    Article  Google Scholar 

  57. Yang WJ, Pranantyo D, Neoh KG et al (2012) Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling. Biomacromolecules 13:2769–2780

    Article  Google Scholar 

  58. Han H, Wu J, Avery CW et al (2011) Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. Langmuir 27:4010–4019

    Article  Google Scholar 

  59. Dhende VP, Samanta S, Jones DM et al (2011) One-step photochemical synthesis of permanent, nonleaching, ultrathin antimicrobial coatings for textiles and plastics. ACS Appl Mater Interfaces 3:2830–2837

    Article  Google Scholar 

  60. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  61. Smith IO, Liu XH, Smith LA et al (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:226–236

    Article  Google Scholar 

  62. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  Google Scholar 

  63. Li L, Wu J, Gao C (2011) Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids Surf B 85:12–18

    Article  Google Scholar 

  64. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  65. Bryant SJ, Cuy JL, Hauch KD et al (2007) Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 28:2978–2986

    Article  Google Scholar 

  66. Drumheller PD, Hubbell JA (1994) Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem 222:380–388

    Article  Google Scholar 

  67. Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  Google Scholar 

  68. Yang F, Williams CG, Wang D et al (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998

    Article  Google Scholar 

  69. Sharma B, Fermanian S, Gibson M et al (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5:167ra6

    Article  Google Scholar 

  70. Bailey BM, Fei R, Munoz-Pinto D et al (2012) PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater 8:4324–4333

    Article  Google Scholar 

  71. He B, Bei J, Wang S (2003) Synthesis and characterization of a functionalized biodegradable copolymer: poly(L-lactide-co-RS-β-malic acid). Polymer 44:989–994

    Article  Google Scholar 

  72. Barrera DA, Zylstra E, Lansbury PT et al (1993) Synthesis and RGD peptide modification of a new biodegradable copolymer—poly(lactic acid-co-Lysine). J Am Chem Soc 115:11010–11011

    Article  Google Scholar 

  73. Cook AD, Hrkach JS, Gao NN et al (1997) Characterization and development of RGD-peptide-modified poly(lactic acid-co-Lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 35:513–523

    Article  Google Scholar 

  74. Dutta D, Pulsipher A, Luo W et al (2011) Synthetic chemoselective rewiring of cell surfaces: generation of three-dimensional tissue structures. J Am Chem Soc 133:8704–8713

    Article  Google Scholar 

  75. Zhang P, Wu H, Wu H et al (2011) RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering. Biomacromolecules 12:2667–2680

    Article  Google Scholar 

  76. Hill-West JL, Chowdhury SM, Slepian MJ et al (1994) Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc Natl Acad Sci USA 91:5967–5971

    Article  Google Scholar 

  77. Fahey TJ, Turbeville T, McIntyre K (1995) Differential TNF secretion by wound fibroblasts compared to normal fibroblasts in response to LPS. J Surg Res 58:759–764

    Article  Google Scholar 

  78. Mu C, Sakai S, Ijima H et al (2010) Preparation of cell-enclosing microcapsules through photopolymerization of methacrylated alginate solution triggered by irradiation with visible light. J Biosci Bioeng 109:618–621

    Article  Google Scholar 

  79. Williams BAR, Lund K, Liu Y et al (2007) Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew Chem Int Ed 46:3051–3054

    Article  Google Scholar 

  80. Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001

    Article  Google Scholar 

  81. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130:246–251

    Article  Google Scholar 

  82. Cao W, Zhang X, Miao X et al (2013) Gamma-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew Chem Int Ed 52:6233–6237

    Article  Google Scholar 

  83. Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46:1647–1658

    Article  Google Scholar 

  84. Lu N, Yang K, Li J et al (2013) Controlled drug loading and release of a stimuli-responsive lipogel consisting of poly(N-isopropylacrylamide) particles and lipids. J Phys Chem B 117:9677–9682

    Article  Google Scholar 

  85. Sivakumaran D, Maitland D, Hoare T (2011) Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12:4112–4120

    Article  Google Scholar 

  86. Hoare T, Timko BP, Santamaria J et al (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400

    Article  Google Scholar 

  87. Gao Y, Zago GP, Jia Z et al (2013) Controlled and triggered small molecule release from a confined polymer film. ACS Appl Mater Interfaces 5:9803–9808

    Article  Google Scholar 

  88. Shukla A, Avadhany SN, Fang JC et al (2010) Tunable vancomycin releasing surfaces for biomedical applications. Small 6:2392–2404

    Article  Google Scholar 

  89. Poon Z, Chang D, Zhao X et al (2011) Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5:4284–4292

    Article  Google Scholar 

  90. DeMuth PC, Moon JJ, Suh H et al (2012) Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6:8041–8051

    Article  Google Scholar 

  91. Hong J, Kim BS, Char K et al (2011) Inherent charge-shifting polyelectrolyte multilayer blends: a facile route for tunable protein release from surfaces. Biomacromolecules 12:2975–2981

    Article  Google Scholar 

  92. Saurer EM, Flessner RM, Sullivan SP et al (2010) Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11:3136–3143

    Article  Google Scholar 

  93. Saurer EM, Jewell CM, Roenneburg DA et al (2013) Polyelectrolyte multilayers promote stent-mediated delivery of DNA to vascular tissue. Biomacromolecules 14:1696–1704

    Article  Google Scholar 

  94. Takemoto H, Miyata K, Hattori S et al (2013) Acidic pH-responsive siRNA conjugate for reversible carrier stability and accelerated endosomal escape with reduced IFNα-associated immune response. Angew Chem Int Ed 52:6218–6221

    Article  Google Scholar 

  95. Ahmed M, Wattanaarsakit P, Narain R (2013) Cationic glyco-nanogels for epidermal growth factor receptor (EGFR) specific siRNA delivery in ovarian cancer cells. Polym Chem 4:3829–3836

    Article  Google Scholar 

  96. Bui L, Abbou S, Ibarboure E et al (2012) Encapsidation of RNA-polyelectrolyte complexes with amphiphilic block copolymers: toward a new self-assembly route. J Am Chem Soc 134:20189–20196

    Article  Google Scholar 

  97. Han L, Zhao J, Zhang X et al (2012) Enhanced siRNA delivery and silencing gold-chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano 6:7340–7351

    Article  Google Scholar 

  98. Lee H, Lytton-Jean AKR, Chen Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  Google Scholar 

  99. Dong DW, Xiang B, Gao W et al (2013) pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Biomaterials 34:4849–4859

    Article  Google Scholar 

  100. Park K, Yang JA, Lee MY et al (2013) Reducible hyaluronic acid-siRNA conjugate for target specific gene silencing. Bioconjugate Chem 24:1201–1209

    Article  Google Scholar 

  101. Lee JB, Hong J, Bonner DK et al (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  Google Scholar 

  102. Flessner RM, Jewell CM, Anderson DG et al (2011) Degradable polyelectrolyte multilayers that promote the release of siRNA. Langmuir 27:7868–7876

    Article  Google Scholar 

  103. Arif M, Tripathi SK, Gupta KC et al (2013) Self-assembled amphiphilic phosphopyridoxyl-polyethylenimine polymers exhibit high cell viability and gene transfection efficiency in vitro and in vivo. J Mater Chem B 1:4020–4031

    Article  Google Scholar 

  104. Cass P, Knower W, Hinton T et al (2013) Synthesis and evaluation of degradable polyurea block copolymers as siRNA delivery agents. Acta Biomater 9:8299–8307

    Article  Google Scholar 

Download references

Acknowledgements

Michael J. Serpe acknowledges funding from the University of Alberta (the Department of Chemistry and the Faculty of Science), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education & Technology Small Equipment Grants Program (AET/SEGP), IC-IMPACTS, and Grand Challenges Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Serpe.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Gao, Y., Li, X. et al. Stimuli-responsive polymeric materials for human health applications. Chin. Sci. Bull. 59, 4237–4255 (2014). https://doi.org/10.1007/s11434-014-0545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0545-6

Keywords

Navigation