Skip to main content

Thermo-Responsive Polymers and Their Application as Smart Biomaterials

  • Chapter
  • First Online:
Smart Nanomaterials in Biomedical Applications

Abstract

Polymers have gained great attention in the last few decades for their wide range of applications in pharmaceutical and biomedical fields. Smart or stimuli-responsive polymers are rapidly evolving classes of polymers that show responsive behavior to environmental changes and external stimuli such as temperature, pH, light, and magnetic fields. This chapter focuses on thermo-responsive polymeric materials that are widely adopted in healthcare sectors, including drug delivery, gene delivery, and tissue engineering. The design and development of smart thermo-responsive polymers involve simple processes that tailor the required physicochemical properties as a function of temperature while considering their biocompatibility and biodegradability. This chapter also describes the sources, specific molecular structures, architectural properties, and assembly formats of selected examples of thermo-responsive polymers. Moreover, pharmaceutical and biomedical applications and the recent advances and challenges of these thermo-responsive polymers are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi SI, Choi JY, Lee JS, Lim HJ, Lee C, Kim J, Chung HY, Lim JO (2012) In vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application. Tissue Eng Regen Med 9:1–9

    Article  CAS  Google Scholar 

  • Abou-Shamat MA, Calvo-Castro J, Stair JL, Cook MT (2019) Modifying the properties of thermogelling poloxamer 407 solutions through covalent modification and the use of polymer additives. Macromol Chem Phys 220:1900173

    Article  Google Scholar 

  • Abu Samah NH, Heard CM (2013) Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). Int J Pharm 453:630–640

    Article  PubMed  Google Scholar 

  • Alexander A, Ajazuddin KJ, Saraf S, Saraf S (2014) Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm 88:575–585

    Article  CAS  PubMed  Google Scholar 

  • Alexandridis P, Alan Hatton T (1995) Poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloid Surf A-Physicochem Eng Asp 96:1–46

    Article  CAS  Google Scholar 

  • Arbós P, Wirth M, Arangoa MA, Gabor F, Irache JM (2002) Gantrez® AN as a new polymer for the preparation of ligand-nanoparticle conjugates. J Control Release 83:321–330

    Article  PubMed  Google Scholar 

  • Argüelles-Monal W, Recillas-Mota M, Fernández-Quiroz D (2017) Chitosan-based thermosensitive materials. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, pp 279–302

    Google Scholar 

  • Azarbayjani AF, Venugopal JR, Ramakrishna S, Lim PFC, Chan YW, Chan SY (2010) Smart polymeric nanofibers for topical delivery of levothyroxine. J Pharm Pharm Sci 13:400–410

    Article  CAS  PubMed  Google Scholar 

  • Bagley CA, Bookland MJ, Pindrik JA, Ozmen T, Gokaslan ZL, Witham TF (2007) Local delivery of OncoGel delays paresis in rat metastatic spinal tumor model. J Neurosurg Spine 7:194–198

    Article  PubMed  Google Scholar 

  • Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33(11):1088–1118

    Article  CAS  Google Scholar 

  • Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, Mayadunne R, van Wijngaarden P (2019) A biocompatible reverse thermoresponsive polymer for ocular drug delivery. Drug Deliv 26(1):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban E, Park M, Jeong S, Kwon T, Kim EH, Jung K, Kim A (2017) Poloxamer-based thermoreversible gel for topical delivery of emodin: influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules 22(2):246

    Article  PubMed Central  Google Scholar 

  • Banerjee A, Ganguly S (2019) Alginate–chitosan composite hydrogel film with macrovoids in the inner layer for biomedical applications. J Appl Polym Sci 136(22):47599

    Article  Google Scholar 

  • Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekkour K, Sun-Waterhouse D, Wadhwa SS (2014) Rheological properties and cloud point of aqueous carboxymethyl cellulose dispersions as modified by high or low methoxyl pectin. Food Res Int 66:247–256

    Article  CAS  Google Scholar 

  • Benslimane A, Bahlouli IM, Bekkour K, Hammiche D (2016) Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: rheological considerations. Appl Clay Sci 132–133:702–710

    Article  Google Scholar 

  • Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9086

    Article  CAS  PubMed  Google Scholar 

  • Bischofberger I, Trappe V (2015) New aspects in the phase behaviour of poly-N-isopropyl acrylamide: systematic temperature dependent shrinking of PNiPAM assemblies well beyond the LCST. Sci Rep 5:15520

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischofberger I, Calzolari DC, De Los RP, Jelezarov I, Trappe V (2014) Hydrophobic hydration of poly-N-isopropyl acrylamide: a matter of the mean energetic state of water. Sci Rep 4(1):1–7

    Article  Google Scholar 

  • Bordat A, Boissenot T, Nicolas J, Tsapis N (2019) Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 138:167–192

    Article  CAS  PubMed  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruschi ML, Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB (2017) Nanostructured therapeutic systems with bioadhesive and thermoresponsive properties. In: Ficai D, Grumezescu AM (eds) Nanostructures for novel therapy: synthesis, characterization and applications. Elsevier, pp 313–342

    Chapter  Google Scholar 

  • Butardo VM, Sreenivasulu N (2016) Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. In: Joen KW (ed) International review of cell and molecular biology. Elsevier, pp 31–70

    Google Scholar 

  • Cao M, Wang Y, Hu X, Gong H, Li R, Cox H, Zhang J, Waigh TA, Xu H, Lu JR (2019) Reversible thermoresponsive peptide-PNIPAM hydrogels for controlled drug delivery. Biomacromolecules 20(9):3601–3610

    Article  CAS  PubMed  Google Scholar 

  • Cardoso AM, Calejo MT, Morais CM, Cardoso AL, Cruz R, Zhu K, Pedroso de Lima MC, Jurado AS, Nyström B (2014) Application of thermoresponsive PNIPAAM-b-PAMPTMA diblock copolymers in siRNA delivery. Mol Pharm 11(3):819–827

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Hui PC, Kan CW (2018) Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers (Basel) 10(5):480

    Article  Google Scholar 

  • Chen JF (1990) Effects of amylose and amylopectin on the functional properties of starch. Retrosp Theses Diss:1–72

    Google Scholar 

  • Chen C, Wang L, Deng L, Hu R, Dong A (2013) Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J Biomed Mater Res – Part A 101(3):684–693

    Article  Google Scholar 

  • Cheng YH, Yang SH, Su WY, Chen YC, Yang KC, Cheng WTK, Wu SC, Lin FH (2010) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng – Part A 16(2):695–703

    Article  CAS  PubMed  Google Scholar 

  • Ciancia S, Cafarelli A, Zahoranova A, Menciassi A, Ricotti L (2020) Pulsatile drug delivery system triggered by acoustic radiation force. Front Bioeng Biotechnol 8:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, pp 27–128

    Chapter  Google Scholar 

  • DeWitt JM, Murthy SK, Ardhanari R, DuVall GA, Wallner G, Litka P, Daugherty C, Fowers K (2017) EUS-guided paclitaxel injection as an adjunctive therapy to systemic chemotherapy and concurrent external beam radiation before surgery for localized or locoregional esophageal cancer: a multicenter prospective randomized trial. Gastrointest Endosc 86:140–149

    Article  PubMed  Google Scholar 

  • Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys 49:319–332

    Article  CAS  Google Scholar 

  • Doberenz F, Zeng K, Willems C, Zhang K, Groth T (2020) Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J Mater Chem B 8(4):607–628

    Article  CAS  PubMed  Google Scholar 

  • Dou Q, Abdul Karim A, Loh X (2016) Modification of thermal and mechanical properties of PEG-PPG-PEG copolymer (F127) with MA-POSS. Polymers (Basel) 8:341

    Article  PubMed Central  Google Scholar 

  • Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V (2015) Gelatin structure and composition linked to hard capsule dissolution: a review. Food Hydrocoll 43:360–376

    Article  CAS  Google Scholar 

  • DuVall GA, Tarabar D, Seidel RH, Elstad NL, Fowers KD (2009) Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anti-Cancer Drugs 20(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Elstad NL, Fowers KD (2009) OncoGel (ReGel/paclitaxel) – clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61:785–794

    Article  CAS  PubMed  Google Scholar 

  • Eo MY, Fan H, Cho YJ, Kim SM, Lee SK (2016) Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 20(1):1–3

    Article  Google Scholar 

  • Erkeçoglu S, Sezer A, Bucak S (2016) Smart delivery systems with shape memory and self-folding polymers. In: Sezer A (ed) Smart drug delivery system. InTech, Croatia, pp 1–30

    Google Scholar 

  • Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-Isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Article  CAS  Google Scholar 

  • Ferjaoui Z, Jamal Al Dine E, Kulmukhamedova A, Bezdetnaya L, Soon Chang C, Schneider R, Mutelet F, Mertz D, Begin-Colin S, Quiles F, Gaffet E, Alem H (2019) Doxorubicin-loaded thermoresponsive superparamagnetic nanocarriers for controlled drug delivery and magnetic hyperthermia applications. ACS Appl Mater Interfaces 11(34):30610–30620

    Article  CAS  PubMed  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Fu S, Zhang H, Zhao Y (2016) Optically and thermally activated shape memory supramolecular liquid crystalline polymers. J Mater Chem C 4(22):4946–4953

    Article  CAS  Google Scholar 

  • Fundueanu G, Constantin M, Ascenzi P (2009) Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater 5:363–373

    Article  CAS  PubMed  Google Scholar 

  • Futscher MH, Philipp M, Müller-Buschbaum P, Schulte A (2017) The role of backbone hydration of poly(N-isopropyl acrylamide) across the volume phase transition compared to its monomer. Sci Rep 7(1):17012

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10(2):99–107

    Article  Google Scholar 

  • García-Peñas A, Biswas CS, Liang W, Wang Y, Yang P, Stadler FJ (2019) Effect of hydrophobic interactions on lower critical solution temperature for poly(N-isopropylacrylamide-co-dopamine Methacrylamide) copolymers. Polymers 11(6):991

    Article  PubMed Central  Google Scholar 

  • Ge F, Zhao Y (2020) Microstructured actuation of liquid crystal polymer networks. Adv Funct Mater 30(2):1901890

    Article  CAS  Google Scholar 

  • Ghaee A, Bagheri-Khoulenjani S, Amir Afshar H, Bogheiri H (2019) Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Compos Part B Eng 177:107339

    Article  CAS  Google Scholar 

  • Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E (2020) Thermoresponsive nanogels based on different polymeric moieties for biomedical applications. Gels 6(3):20

    Article  CAS  PubMed Central  Google Scholar 

  • Ghosh Dastidar D, Chakrabarti G (2019) Thermoresponsive drug delivery systems, characterization and application. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra R, Thomas S (eds) Micro and nano technologies, applications of targeted nano drugs and delivery systems. Elsevier, pp 133–155

    Chapter  Google Scholar 

  • González-Hernández G, Pino-Ramos VH, Islas L, Alvarez-Lorenzo C, Concheiro A, Bucio E (2019) Radiation-grafting of N-vinylcaprolactam and 2-hydroxyethyl methacrylate onto polypropylene films to obtain a thermo-responsive drug delivery system. Radiat Phys Chem 157:6–14

    Article  Google Scholar 

  • Gornall JL, Terentjev EM (2007) Concentration-temperature superposition of helix folding rates in gelatin. Phys Rev Lett 99:028304

    Article  CAS  PubMed  Google Scholar 

  • Graham S, Marina PF, Blencowe A (2019) Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym 207:143–159

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Feng Z, Liu X, Wang C, Huang P, Zhang J, Deng L, Wang W, Dong A (2020) An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. Soft Matter 16(24):5750–5758

    Article  CAS  PubMed  Google Scholar 

  • Gok B, McGirt MJ, Sciubba DM, Garces-Ambrossi G, Nelson C, Noggle J, Bydon A, Witham TF, Wolinsky JP, Gokaslan ZL (2009) Adjuvant treatment with locally delivered OncoGel delays the onset of paresis after surgical resection of experimental spinal column metastasis. Neurosurgery 65(1):193–19

    Google Scholar 

  • Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  • Haladjova E, Toncheva-Moncheva N, Apostolova MD, Trzebicka B, Dworak A, Petrov P, Dimitrov I, Rangelov S, Tsvetanov CB (2014) Polymeric nanoparticle engineering: from temperature-responsive polymer mesoglobules to gene delivery systems. Biomacromolecules 15(12):4377–4395

    Article  CAS  PubMed  Google Scholar 

  • Hamdy Makhlouf AS, Abu-Thabit NY, Ferretiz D (2020) Chapter 12 – shape-memory coatings, polymers, and alloys with self-healing functionality for medical and industrial applications. In: Makhlouf ASH, Abu-Thabit NY (eds) Advances in smart coatings and thin films for future industrial and biomedical engineering applications. Elsevier, pp. 335–358

    Chapter  Google Scholar 

  • Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Scaffold-free tissue engineering using cell sheet technology. RSC Adv 2(6):2184–2019

    Article  CAS  Google Scholar 

  • Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A – Chem 2:1441–1455

    Article  CAS  Google Scholar 

  • Hirotsu S (1993) Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. Adv Polym Sci 110:1–26

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Hogan KJ, Mikos AG (2020) Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polymer 211:123063

    Article  CAS  Google Scholar 

  • Holder AJ, Badiei N, Hawkins K, Wright C, Williams PR, Curtis DJ (2018) Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol-gel transition. Soft Matter 14:574–580

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Bin CY, Lo YL, Lin YH (2016) Development of chitosan/β-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent. Carbohydr Polym 147:409–414

    Article  CAS  PubMed  Google Scholar 

  • Iijima M, Takahashi M, Hatakeyama T, Hatakeyama H (2013) Detailed investigation of gel-sol transition temperature of κ-carrageenan studied by DSC, TMA and FBM. J Therm Anal Calorim 114:895–901

    Article  CAS  Google Scholar 

  • Indulekha S, Arunkumar P, Bahadur D, Srivastava R (2016) Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater Sci Eng C 62:113–122

    Article  CAS  Google Scholar 

  • Iwata T, Yamato M, Washio K, Yoshida T, Tsumanuma Y, Yamada A, Onizuka S, Izumi Y, Ando T, Okano T, Ishikawa I (2018) Periodontal regeneration with autologous periodontal ligament-derived cell sheets – a safety and efficacy study in ten patients. Regen Ther 9:38–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain S, Sandhu S, Malvi R, Gupta B (2013) Cellulose derivatives as thermoresponsive polymer: an overview. J Appl Pharm Sci 3:139–144

    CAS  Google Scholar 

  • Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials (Basel) 4:1861–1905

    Article  CAS  PubMed Central  Google Scholar 

  • Kang H, Suich DE, Davies JF, Wilson AD, Urban JJ, Kostecki R (2019) Molecular insight into the lower critical solution temperature transition of aqueous alkyl phosphonium benzene sulfonates. Commun Chem 2(1):51

    Article  Google Scholar 

  • Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Funakoshi S, Yoshida Y, Yamanaka S, Shimizu T, Okano T, Daimon T, Toda K, Sawa Y (2017) Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Sci Rep 7(1):8824

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazempour M, Edjlali L, Akbarzadeh A, Davaran S, Farid SS (2019) Synthesis and characterization of dual pH-and thermo-responsive graphene-based nanocarrier for effective anticancer drug delivery. J Drug Deliv Sci Technol 54(999):101158

    Article  CAS  Google Scholar 

  • Kempe MD, Scruggs NR, Verduzco R, Lal J, Kornfield JA (2004) Self-assembled liquid-crystalline gels designed from the bottom up. Nat Mater 3(3):177–182

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 3(42):8224–8249

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Akhtar N, Minhas MU (2018) Fabrication, rheological analysis, and in vitro characterization of in situ chemically cross-linkable thermogels as controlled and prolonged drug depot for localized and systemic delivery. Polym Adv Technol 30:pat.4514

    Article  Google Scholar 

  • Kim YJ, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5(23):4307–4321

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim JH, Jeon O, Kwon IC, Park K (2009) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71:420–430

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Won YW, Lim KS, Kim YH (2012) Low-molecular-weight methylcellulose-based thermo-reversible gel/pluronic micelle combination system for local and sustained docetaxel delivery. Pharm Res 29:525–534

    Article  CAS  PubMed  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  CAS  PubMed  Google Scholar 

  • Kojima H (2018) Studies on the phase transition of hydrogels and aqueous solutions of thermosensitive polymers. Polym J 50:411–418

    Article  CAS  Google Scholar 

  • Kurdtabar M, Baghestani G, Bardajee GR (2018) Development of a novel thermo-responsive hydrogel-coated gold nanorods as a drug delivery system. Gold Bull 52(1):9–17

    Article  Google Scholar 

  • Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354(6351):291–293

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Guan J (2011) Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 8:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Linghu E, Matthes K, Mino-Kenudson M, Brugge WR (2005) Feasibility of endoscopic ultrasound-guided OncoGel (ReGel/Paclitaxel) injection into the pancreas in pigs. Endoscopy 37:1140–1142

    Article  CAS  PubMed  Google Scholar 

  • Litowczenko J, Gapiński J, Markiewicz R, Woźniak A, Wychowaniec JK, Peplińska B, Jurga S, Patkowski A (2021) Synthesis, characterization and in vitro cytotoxicity studies of poly-N-isopropyl acrylamide gel nanoparticles and films. Mater Sci Eng C 118:111507

    Article  CAS  Google Scholar 

  • Liu D, Sun J (2020) Thermoresponsive Polypeptoids. Polymers (Basel) 12(12):2973

    Article  CAS  Google Scholar 

  • Liu W, Griffith M, Li F (2008) Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med 19(11):3365–3371

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Huang S, Li L (2016) Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels. J Rheol (N Y N Y) 60:203–214

    Article  CAS  Google Scholar 

  • Liu P, Guo B, Wang S, Ding J, Zhou W (2019) A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm 558:101–109

    Article  CAS  PubMed  Google Scholar 

  • Loh XJ, Goh SH, Li J (2007) Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials 28:4113–4123

    Article  CAS  PubMed  Google Scholar 

  • Luckanagul JA, Pitakchatwong C, Ratnatilaka Na Bhuket P et al (2018) Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym 181:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Makhaeva EE, Tenhu H, Khokhlov AR (1998) Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118

    Article  CAS  Google Scholar 

  • Martinez AM, Cox LM, Killgore JP, Bongiardina NJ, Riley RD, Bowman CN (2021) Permanent and reversibly programmable shapes in liquid crystal elastomer microparticles capable of shape switching. Soft Matter 17:467–474

    Article  CAS  PubMed  Google Scholar 

  • Matanović MR, Kristl J, Grabnar PA (2014) Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 472:262–275

    Article  PubMed  Google Scholar 

  • Matthes K, Mino-Kenudson M, Sahani DV, Holalkere N, Fowers KD, Rathi R, Brugge WR (2007) EUS-guided injection of paclitaxel (OncoGel) provides therapeutic drug concentrations in the porcine pancreas (with video). Gastrointest Endosc 65(3):448–453

    Article  PubMed  Google Scholar 

  • Mazurek-Budzyńska M, Razzaq MY, Behl M, Lendlein A (2019) Shape-memory polymers. In: Jafar Mazumder MA, Sheardown H, Al-Ahmed A (eds) Functional polymers. Springer, Cham, pp 605–663

    Chapter  Google Scholar 

  • McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H (2015) Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11):20397–20408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Jiang J, Anthamatten M (2016) Body temperature triggered shape-memory polymers with high elastic energy storage capacity. J Polym Sci B Polym Phys 54. https://doi.org/10.1002/polb.23990

  • Miguel SP, Ribeiro MP, Brancal H et al (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym 111:366–373

    Article  CAS  PubMed  Google Scholar 

  • Mohan YM, Murthy PSK, Sreeramulu J, Raju KM (2005) Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate). J Appl Polym Sci 98:302–314

    Article  CAS  Google Scholar 

  • Moreno E, Schwartz J, Larrañeta E, Nguewa PA, Sanmartín C, Agüeros M, Irache JM, Espuelas S (2014) Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) – Pluronic® F127 copolymers for controlled protein release. Int J Pharm 459:1–9

    Article  CAS  PubMed  Google Scholar 

  • Moschouris K, Firoozi N, Kang Y (2016) The application of cell sheet engineering in the vascularization of tissue regeneration. Regen Med 11(6):559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymer and its composite: function and application. In: Beaumont PWR, Zweben CH (eds) Comprehensive composite materials II. Elsevier, Oxford, pp 454–486

    Chapter  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Nagase K, Okano T (2016) Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. J Mater Chem B 4(39):6381–6397

    Article  CAS  PubMed  Google Scholar 

  • Nagase K, Hasegawa M, Ayano E, Maitani Y, Kanazawa H (2019) Effect of polymer phase transition behavior on temperature-responsive polymer-modified liposomes for siRNA transfection. Int J Mol Sci 20(2):430

    Article  PubMed Central  Google Scholar 

  • Nam K, Kim K, Dean SM, Brown CT, Davis RS, Okano T, Baker OJ (2019) Using cell sheets to regenerate mouse submandibular glands. NPJ Regen Med 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Theune LE, Calderón M (2020) Effect of crosslinking density on thermoresponsive nanogels: a study on the size control and the kinetics release of biomacromolecules. Eur Polym J 124:109478

    Article  Google Scholar 

  • Naziris N, Skandalis A, Mavromoustakos T, Pispas S, Demetzos C (2021) Association of the thermodynamics with the functionality of thermoresponsive chimeric nanosystems. In: Mavromoustakos T, Tzakos AG, Durdagi S (eds) Supramolecules in drug discovery and drug delivery: methods and protocols. Springer US, New York, pp 221–233

    Chapter  Google Scholar 

  • Ndaya D, Bosire R, Kasi RM (2019) Cholesteric–azobenzene liquid crystalline copolymers: design, structure and thermally responsive optical properties. Polym Chem 10(28):3868–3878

    Article  CAS  Google Scholar 

  • Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (UCST)? Polym Chem 8(1):220–232

    Article  CAS  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  • Ohm C, Brehmer M, Zentel R (2010) Liquid crystalline elastomers as actuators and sensors. Adv Mater 22(31):3366–3387

    Article  CAS  PubMed  Google Scholar 

  • Ordeig O, Chin SY, Kim S, Chitnis PV, Sia SK (2016) An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep 6(1):22803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorno LL, Maldonado DE, Whitener RJ, Brandley AN, Yiantsos A, Medina JDR, Byrne ME (2020) Amphiphilic PLGA-PEG-PLGA triblock copolymer nanogels varying in gelation temperature and modulus for the extended and controlled release of hyaluronic acid. J Appl Polym Sci 137(25):48678

    Article  CAS  Google Scholar 

  • Park CW, Lee SJ, Kim D, Lee DS, Kim SC (2008) Micelle formation and sol–gel transition behavior of comb-like amphiphilic poly((PLGA-b-PEG)MA) copolymers. J Polym Sci Part A Polym Chem 46:1954–1963

    Article  CAS  Google Scholar 

  • Peng Y, Li J, Li J, Fei Y, Dong J, Pan W (2013) Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride. Int J Pharm 441(1–2):482–490

    Article  CAS  PubMed  Google Scholar 

  • Pişkin E (2004) Molecularly designed water soluble, intelligent, nanosize polymeric carriers. Int J Pharm 277(1–2):105–118

    Article  PubMed  Google Scholar 

  • Podewitz M, Wang Y, Quoika PK, Loeffler JR, Schauperl M, Liedl KR (2019) Coil–globule transition thermodynamics of poly(N-isopropylacrylamide). J Phys Chem B 123(41):8838–8847

    Article  CAS  PubMed  Google Scholar 

  • Quah SP, Smith AJ, Preston AN, Laughlin ST, Bhatia SR (2018) Large-area alginate/PEO-PPO-PEO hydrogels with thermoreversible rheology at physiological temperatures. Polymer (Guildf) 135:171–177

    Article  CAS  Google Scholar 

  • Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 10:235

    Article  Google Scholar 

  • Rangabhatla ASL, Tantishaiyakul V, Oungbho K, Boonrat O (2016) Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. Int J Pharm 499:110–118

    Article  CAS  PubMed  Google Scholar 

  • Rassing J, Attwood D (1982) Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer Pluronic F127 in aqueous solution. Int J Pharm 13:47–55

    Article  CAS  Google Scholar 

  • Rassing J, Mckenna WP, Bandyopadhyay S, Eyring EM (1984) Ultrasonic and 13C-NMR studies on gel formation in aqueous solutions of the ABA block polymer Pluronic F 127. J Mol Liq 27:165–178

    CAS  Google Scholar 

  • Rhee C, Amar E, Glazebrook M, Coday C, Wong IH (2018) Safety profile and short-term outcomes of BST-CarGel as an adjunct to microfracture for the treatment of chondral lesions of the hip. Orthop J Sport Med 6:2325967118789871

    Article  Google Scholar 

  • Risteen B, Delepierre G, Srinivasarao M, Weder C, Russo P, Reichmanis E, Zoppe J (2018) Thermoresponsive liquid crystals: thermally switchable liquid crystals based on cellulose nanocrystals with patchy polymer grafts (Small 46/2018). Small 14(46). https://doi.org/10.1002/smll.201870218

  • Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY (2020) Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater 69:1–20

    Article  Google Scholar 

  • Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63

    Article  PubMed  Google Scholar 

  • Ruiz-Gatón L, Espuelas S, Huarte J, Larrañeta E, Martin-Arbella N, Irache JM (2019) Nanoparticles from Gantrez® AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm 571:118699

    Article  PubMed  Google Scholar 

  • Russo E, Villa C (2019) Poloxamer hydrogels for biomedical applications. Pharmaceutics 11:671

    Article  CAS  PubMed Central  Google Scholar 

  • Ruzette A-VG, Mayes AM (2001) A simple free energy model for weakly interacting polymer blends. Macromolecules 34(6):1894–1907

    Article  CAS  Google Scholar 

  • Rzaev ZMO, Dinçer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  • Safranski DL (2017) Introduction to shape-memory polymers. In: Safranski DL, Griffis JC (eds) Shape-memory polymer device design. William Andrew Publishing, pp 1–22

    Google Scholar 

  • Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G (2019) A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 121:38–54

    Article  CAS  PubMed  Google Scholar 

  • Sarwan T, Kumar P, Choonara YE, Pillay V (2020) Hybrid thermo-responsive polymer systems and their biomedical applications. Front Mater 7. https://doi.org/10.3389/fmats.2020.00073

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Article  CAS  PubMed  Google Scholar 

  • Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M (2020) “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 8(21):5787–5803

    Article  CAS  PubMed  Google Scholar 

  • Shalhoub J, Hinchliffe RJ, Powell JT (2013) The world of legoo assessed: a short systematic and critical review. Eur J Vasc Endovasc Surg 45:44–45

    Article  CAS  PubMed  Google Scholar 

  • Siirilä J, Karesoja M, Pulkkinen P, Malho J-M, Tenhu H (2019) Soft poly(N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. Eur Polym J 115:59–69

    Article  Google Scholar 

  • Simões SM, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C (2015) Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 12:297–318

    Article  PubMed  Google Scholar 

  • Singka GSL, Samah NA, Zulfakar MH, Yurdasiper A, Heard CM (2010) Enhanced topical delivery and anti-inflammatory activity of methotrexate from an activated nanogel. Eur J Pharm Biopharm 76:275–281

    Article  CAS  PubMed  Google Scholar 

  • Snow M, Williams R, Pagkalos J, Grover L (2018) An in vitro study to determine the feasibility of combining bone marrow concentrate with BST-CarGel as a treatment for cartilage repair. Cartilage 12(2):226–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sponchioni M, Capasso Palmiero U, Moscatelli D (2019) Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng C 102:589–605

    Article  CAS  Google Scholar 

  • Steinwachs M, Cavalcanti N, Reddy SM, Werner C, Tschopp D, Choudur HN (2019) Arthroscopic and open treatment of cartilage lesions with BST-CARGEL scaffold and microfracture: a cohort study of consecutive patients. Knee 26(1):174–184

    Article  PubMed  Google Scholar 

  • Strzelec K, Sienkiewicz N, Szmechtyk T (2020) Classification of shape-memory polymers, polymer blends, and composites. In: Parameswaranpillai J, Siengchin S, George JJ, Jose S (eds) Shape memory polymers, blends and composites: advances and applications. Springer Singapore, Singapore, pp 21–52

    Chapter  Google Scholar 

  • Sun W, An Z, Wu P (2017) UCST or LCST? Composition-dependent thermoresponsive behavior of Poly(N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules 50(5):2175–2182

    Article  CAS  Google Scholar 

  • Supardi, Yusuf Y, Harsoyo S (2015) Characterization of main-chain liquid crystal elastomers by using differential scanning calorimetry (DSC) method. Adv Mater Res 1123:69–72

    Article  Google Scholar 

  • Tahara Y, Sakiyama M, Takeda S, Nishimura T, Mukai S-A, Sawada S-I, Sasaki Y, Akiyoshi K (2016) Self-assembled nanogels of cholesterol-bearing hydroxypropyl cellulose: a thermoresponsive building block for nanogel tectonic materials. Langmuir 32(47):12283–12289

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Okano T (2019) Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 138:276–292

    Article  CAS  PubMed  Google Scholar 

  • Talaat W, Aryal Ac S, Al Kawas S, Samsudin ABR, Kandile NG, Harding DRK, Ghoneim MM, Zeiada W, Jagal J, Aboelnaga A, Haider M (2020) Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration. Int J Nanomedicine 15:7775–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Zhang Y, Shen A, Yang Y, Diao L, Wang L, Cai D, Hu Y (2020) Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomedicine 15:5855–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teotia AK, Sami H, Kumar A (2015) Thermo-responsive polymers: structure and design of smart materials. Switch responsive surfaces. Mater Biomed Appl:3–43

    Google Scholar 

  • Thornton PD, Mart RJ, Ulijn RV (2007) Enzyme-responsive polymer hydrogel particles for controlled release. Adv Mater 19(9):1252–1256

    Article  Google Scholar 

  • Tran DL, Pham GD, Nguyen XP, Nhuyen NT, Tran V, Mai TTT, Ba TC (2011) Some biomedical applications of chitosan-based hybrid nanomaterials. Adv Nat Sci Nanosci Nanotechnol 2(4):045004

    Article  Google Scholar 

  • Trongsatitkul T, Budhlall BM (2013) Microgels or microcapsules? Role of morphology on the release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels. Polym Chem 4:1502–1516

    Article  CAS  Google Scholar 

  • Vadnere M, Amidon G, Lindenbaum S, Haslam JL (1984) Thermodynamic studies on the gel-sol transition of some pluronic polyols. Int J Pharm 22:207–218

    Article  CAS  Google Scholar 

  • Venugopal B, Shenoy SJ, Mohan S, Anil Kumar PR, Kumary TV (2020) Bioengineered corneal epithelial cell sheet from mesenchymal stem cells-a functional alternative to limbal stem cells for ocular surface reconstruction. J Biomed Mater Res B Appl Biomater 108(3):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Vukelja SJ, Anthony SP, Arseneau JC, Berman BS, Cunningham CC, Nemunaitis JJ, Fowers KD (2007) Phase 1 study of escalating-dose OncoGel® (ReGel®/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anti-Cancer Drugs 18:283–289

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Xu XD, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2008) Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloids Surf B: Biointerfaces 64(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ao Q, Tian X et al (2017) Polymers gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel) 9(9):401

    Article  Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3):1215–1242

    Article  CAS  Google Scholar 

  • Wei W, Xiong H (2018) Orientation and morphology control of the liquid crystalline block copolymer thin film by liquid crystalline solvent. Langmuir 34(50):15455–15461

    Article  CAS  PubMed  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Article  Google Scholar 

  • Wimmer-Greinecker G, Bouchot O, Verhoye JP, Perrault LP, Börgermann J, Diegeler A, Van Garsse L, Rastan AJ (2011) Randomized clinical trial comparing a thermosensitive polymer (LeGoo) with conventional vessel loops for temporary coronary artery occlusion during off-pump coronary artery bypass surgery. Ann Thorac Surg 92:2177–2183

    Article  PubMed  Google Scholar 

  • Wu J, Zheng Y, Jiang S, Qu Y, Wei T, Zhan W, Wang L, Yu Q, Chen H (2019) Two-in-one platform for high-efficiency intracellular delivery and cell harvest: when a photothermal agent meets a thermoresponsive polymer. ACS Appl Mater Interfaces 11(13):12357–12366

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Magaz A, Huo S, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W (2020a) Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds. Acta Biomater 113:177–195

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhai W, Gao X, Zhang R, Yu Y (2020b) Preparation and self-assembly of thermosensitive triblock copolymers with N-isopropylacrylamide and 3-methacryloxypropyltrimethoxysilane as monomers. Polym Bull:1–16. https://doi.org/10.1007/s00289-020-03131-5

  • Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, Zhang F-h HY, Jinsong L (2015) Shape memory polymers with high and low temperature resistant properties. Sci Rep 5:14137

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Xu Y, Bi B, Hou M, Yao L, Du Q, He A, Liu Y, Miao C, Liang X, Jiang X, Zhou G, Cao Y (2020) A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo. Acta Biomater 108:87–96

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Wang Y, Zhang Z, Hsu B, Jabs EW, Elisseeff JH (2008) The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. Bone 43(1):55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HW, Lee AW, Huang CH, Chen JK (2014) Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds. Soft Matter 10:8330–8340

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zhu L, Chen Y (2015) One-step fabrication of 3-methacryloxypropyltrimethoxysilane modified silica and investigation of fluorinated polyacrylate/silica nanocomposite films. RSC Adv 5:58973–58979

    Article  CAS  Google Scholar 

  • Yang L, Fan X, Zhang J, Ju J (2020) Preparation and characterization of thermoresponsive Poly(N-Isopropylacrylamide) for cell culture applications. Polymers (Basel) 12(2):389

    Article  CAS  Google Scholar 

  • Yin L, Han L, Ge F, Tong X, Zhang W, Soldera A, Zhao Y (2020) A novel side-chain liquid crystal elastomer exhibiting anomalous reversible shape change. Angew Chem Int Ed 59(35):15129–15134

    Article  CAS  Google Scholar 

  • Yusuf Y (2017) Influence of cross-linker concentration on physical properties of main-chain liquid crystalline elastomers. Mater Res 20:1541–1547

    Article  Google Scholar 

  • Zenati A, Thammalangsy S (2018) Characteristics and self-assembly behaviors of photochromic triblock azo-copolymers based on hard-soft-hard segments synthesized via RAFT process. J Polym Sci Part A: Polym Chem 56(15):1617–1629

    Article  CAS  Google Scholar 

  • Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, Rhee BG, Mestecky J, Moldoveanu Z, Morgan M, Weitman S (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72:203–215

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu W, Lv G, Zhu J, Wang W, Ma X, Liu X (2011) The artificial organ: cell encapsulation. In: Comprehensive biotechnology, 2nd edn. Elsevier Inc, pp 99–114

    Chapter  Google Scholar 

  • Zhang Q, Weber C, Schubert US, Hoogenboom R (2017) Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater Horiz 4(2):109–116

    Article  CAS  Google Scholar 

  • Zhang J, Yun S, Karami A, Jing B, Zannettino A, Du Y, Zhang H (2020) 3D printing of a thermosensitive hydrogel for skin tissue engineering: a proof of concept study. Bioprinting 19:e00089

    Article  Google Scholar 

  • Zhou B, Liu YJ, Lan X, Leng JS, Yoon SH (2012) A glass transition model for shape memory polymer and its composite. Int J Mod Phys B 23(06n07):1248–1253

    Article  Google Scholar 

  • Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chulalongkorn University’s Graduate Scholarship Programme for ASEAN or Non-ASEAN countries (KPA and BPIB), the Chulalongkorn Academic Advancement into its Second Century (CUAASC) Project (JAL and Pornchai R.), the National Research University Project, Office of Higher Education Commission (NRU59-047-AM) (JAL and Pornchai R.), the National Research Council of Thailand (IRN FY2020 507/2563) (Pornchai R.), and the Thailand Science Research and Innovation (TSRI) Fund (CU_FRB640001_01_33_3) (Pornchai R. and Pranee R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranee Rojsitthisak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luckanagul, J.A., Alcantara, K.P., Bulatao, B.P.I., Wong, T.W., Rojsitthisak, P., Rojsitthisak, P. (2021). Thermo-Responsive Polymers and Their Application as Smart Biomaterials. In: Kim, JC., Alle, M., Husen, A. (eds) Smart Nanomaterials in Biomedical Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_11

Download citation

Publish with us

Policies and ethics