Skip to main content

Stimuli-Responsive Hydrogels in Drug Delivery

  • Chapter
  • First Online:
Functional Biomaterials

Abstract

Stimuli-responsive hydrogels have been widely studied for the controlled release of bioactive molecules and therapeutic drugs. These systems offer a promising alternative to enhancing the bioavailability of the drugs and protecting them from unfavorable conditions in the human body. Unlike conventional methods, stimuli-responsive hydrogels respond to one or several stimuli owing to their capacity to change their physical, mechanical, or chemical properties, favoring drug release at the target site. This chapter summarizes the properties of stimuli-responsive hydrogels such as thermoresponsive, pH-responsive, photoresponsive, analyte-responsive hydrogels, ultrasound, and others (e.g., electric-field-responsive, redox-responsive, shear-responsive, and magnetic-responsive) as drug delivery systems. The first section offers an overview of the different release mechanisms for controlling the drug release. The second section describes the polymers most frequently used in the production of stimuli-responsive hydrogels for drug delivery. In the third section, the stimuli-responsive hydrogels are described with applications at the different target sites of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdollahiyan P, Baradaran B, De La Guardia M, Oroojalian F, Mokhtarzadeh A (2020) Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 328:514 –531

    Article  CAS  PubMed  Google Scholar 

  • Adedoyin AA, Ekenseair AK (2018) Biomedical applications of magneto-responsive scaffolds. Nano Res 11:5049 –5064

    Article  CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105 –121

    Article  CAS  Google Scholar 

  • Ahn S-K, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151 –1157

    Article  CAS  PubMed  Google Scholar 

  • Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, Ponchel G (2010) Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm 76:296 –303

    Article  CAS  PubMed  Google Scholar 

  • Altomare L, Cochis A, Carletta A, Rimondini L, Farè S (2016) Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication. J Mater Sci Mater Med 27:95

    Article  PubMed  Google Scholar 

  • Alves T, Souza J, Rebelo M, Pontes K, Santos C, Lima R, Jozala A, Grotto D, Severino P, Rai M, Chaud M (2018) Formulation and evaluation of thermoresponsive polymeric blend as a vaginal controlled delivery system. J Sol-Gel Sci Technol 86:536 –552

    Article  CAS  Google Scholar 

  • Atanasova D, Staneva D, Grabchev I (2021) Textile materials modified with stimuli-responsive drug carrier for skin topical and transdermal delivery. Materials 14:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avais M, Chattopadhyay S (2019) Waterborne pH responsive hydrogels: synthesis, characterization and selective pH responsive behavior around physiological pH. Polymer 180:121701

    Article  CAS  Google Scholar 

  • Bajpai AK, Bajpai J, Saini R, Gupta R (2011) Responsive polymers in biology and technology. Polym Rev 51:53 –97

    Article  CAS  Google Scholar 

  • Bellotti E, Schilling AL, Little SR, Decuzzi P (2021) Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: a review. J Control Release 329:16 –35

    Article  CAS  PubMed  Google Scholar 

  • Bjørge IM, Costa AMS, Silva AS, Vidal JPO, Nóbrega JM, Mano JF (2018) Tuneable spheroidal hydrogel particles for cell and drug encapsulation. Soft Matter 14:5622 –5627

    Article  PubMed  PubMed Central  Google Scholar 

  • Bok M, Zhao Z-J, Jeon S, Jeong J-H, Lim E (2020) Ultrasonically and iontophoretically enhanced drug-delivery system based on dissolving microneedle patches. Sci Rep 10:2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolla PK, Rodriguez VA, Kalhapure RS, Kolli CS, Andrews S, Renukuntla J (2018) A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 46:416 –435

    Article  CAS  Google Scholar 

  • Bouchemal K, Aka-Any-Grah A, Dereuddre-Bosquet N, Martin L, Lievin-Le-Moal V, Le Grand R, Nicolas V, Gibellini D, Lembo D, Poüs C, Koffi A, Ponchel G (2015) Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob Agents Chemother 59:2215 –2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchemal K, Frelichowska J, Martin L, Lievin-Le Moal V, Le Grand R, Dereuddre-Bosquet N, Djabourov M, Aka-Any-Grah A, Koffi A, Ponchel G (2013) Note on the formulation of thermosensitive and mucoadhesive vaginal hydrogels containing the miniCD4 M48U1 as anti-HIV-1 microbicide. Int J Pharm 454:649 –652

    Article  CAS  PubMed  Google Scholar 

  • Bratek-Skicki A (2021) Towards a new class of stimuli-responsive polymer-based materials – recent advances and challenges. Appl Surface Sci Adv 4:100068

    Article  Google Scholar 

  • Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678 –1719

    Article  CAS  Google Scholar 

  • Cai M-H, Chen X-Y, Fu L-Q, Du W-L, Yang X, Mou X-Z, Hu P-Y (2021) Design and development of hybrid hydrogels for biomedical applications: recent trends in anticancer drug delivery and tissue engineering. Front Bioengin Biotechnol 9:630943

    Article  Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252 –267

    Article  Google Scholar 

  • Chacko IA, Ghate VM, Dsouza L, Lewis SA (2020) Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B: Biointerfaces 195:111262

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Xiao L, Tang Q (2009) Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. J Appl Polym Sci 113:400 –407

    Article  CAS  Google Scholar 

  • Chatterjee S, Hui PC-L, Kan C-W (2018) Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers 10:480

    Article  PubMed Central  Google Scholar 

  • Chatterjee S, Hui PC-L, Kan C-W, Wang W (2019) Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 9:11658

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C-C, Fang C-L, Al-Suwayeh SA, Leu Y-L, Fang J-Y (2011) Transdermal delivery of selegiline from alginate–Pluronic composite thermogels. Int J Pharm 415:119 –128

    Article  CAS  PubMed  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155 –2161

    Article  CAS  PubMed  Google Scholar 

  • Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari (2018) Elastic materials for tissue engineering applications: natural, synthetic, and hybrid polymers. Acta Biomater 79:60 –82

    Google Scholar 

  • Contessi N, Altomare L, Filipponi A, Farè S (2017) Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Mater Lett 207:157 –160

    Article  CAS  Google Scholar 

  • Culver HR, Clegg JR, Peppas NA (2017) Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res 50:170 –178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das Neves J, Nunes R, Machado A, Sarmento B (2015) Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev 92:53 –70

    Article  CAS  PubMed  Google Scholar 

  • Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ (2020) Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12:1397

    Article  CAS  PubMed Central  Google Scholar 

  • Don T-M, Huang M-L, Chiu A-C, Kuo K-H, Chiu W-Y, Chiu L-H (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107:266 –273

    Article  CAS  Google Scholar 

  • Dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M (2020) Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 590:119867

    Article  CAS  PubMed  Google Scholar 

  • Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP (2018) Functional stimuli-responsive gels: hydrogels and microgels. Gels 4:54

    Article  PubMed Central  Google Scholar 

  • Fathi M, Barar J, Aghanejad A, Omidi Y (2015) Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 5:159 –164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira NN, Perez TA, Pedreiro LN, Prezotti FG, Boni FI, Cardoso VMDO, Venâncio T, Gremião MPD (2017) A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Drug Dev Ind Pharm 43:1656 –1668

    Article  CAS  PubMed  Google Scholar 

  • Fischer T, Demco DE, Fechete R, Möller M, Singh S (2020) Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity. Soft Matter 16:6549 –6562

    Article  CAS  PubMed  Google Scholar 

  • Flores FP, Kong F (2017) In vitro release kinetics of microencapsulated materials and the effect of the food matrix. Annu Rev Food Sci Technol 8:237 –259

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Tahrir F, Ganji F, Mani AR, Khodaverdi E (2016) In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Deliv 23:1028 –1036

    Article  CAS  Google Scholar 

  • Gholamali I (2021) Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Engineering Transl Med 7:91 –114

    Article  CAS  Google Scholar 

  • Gholizadeh H, Cheng S, Pozzoli M, Messerotti E, Traini D, Young P, Kourmatzis A, Ong HX (2019a) Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 16:453 –466

    Article  CAS  PubMed  Google Scholar 

  • Gholizadeh H, Messerotti E, Pozzoli M, Cheng S, Traini D, Young P, Kourmatzis A, Caramella C, Ong HX (2019b) Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech 20:299

    Article  PubMed  Google Scholar 

  • Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173 –1222

    Article  CAS  Google Scholar 

  • Goncharuk O, Samchenko Y, Kernosenko L, Korotych O, Poltoratska T, Pasmurtseva N, Oranska O, Sternik D, Mamyshev I (2020) Thermoresponsive hydrogels physically crosslinked with magnetically modified LAPONITE® nanoparticles. Soft Matter 16:5689 –5701

    Article  CAS  PubMed  Google Scholar 

  • Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, Momekova D (2020) Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm 591:120010

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569 –579

    Article  CAS  PubMed  Google Scholar 

  • Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MTC, Irwin NJ, Donnelly L, Mccoy CP (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907 –914

    Article  CAS  PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993 –2007

    Article  CAS  Google Scholar 

  • Hogan KJ, Mikos AG (2020) Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polymer 211:123063

    Article  CAS  Google Scholar 

  • Hou H, Kim W, Grunlan M, Han A (2009) A thermoresponsive hydrogel poly(N-isopropylacrylamide) micropatterning method using microfluidic techniques. J Micromech Microeng 19:127001

    Article  Google Scholar 

  • Hu C, Jia W (2019) Therapeutic medications against diabetes: what we have and what we expect. Adv Drug Deliv Rev 139:3 –15

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Hao L, Wang H, Yang X, Zhang G, Wang G, Zhang X (2011) Hydrogel contact lens for extended delivery of ophthalmic drugs. Int J Polymer Sci 2011:814163

    Article  Google Scholar 

  • Huang D, Sun M, Bu Y, Luo F, Lin C, Lin Z, Weng Z, Yang F, Wu D (2019a) Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B 7:2330 –2337

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Qi X, Chen Y, Wu Z (2019b) Thermosensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J 27:990 –999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Li R, Liu W, Dai J, Du Z, Wang X, Ma J, Zhao J (2014) Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve. Neural Regen Res 9:1371 –1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ (2014) Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci U S A 111:9762 –9767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Sullivan MO, Kiick KL (2020) Targeted drug delivery via the use of ECM-mimetic materials. Front Bioeng Biotechnol 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, Hirayama F (2017) Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery. Mol Pharm 14:2740 –2748

    Article  CAS  PubMed  Google Scholar 

  • Jalalvandi E, Shavandi A (2018) In situ-forming and pH-responsive hydrogel based on chitosan for vaginal delivery of therapeutic agents. J Mater Sci Mater Med 29:158

    Article  PubMed  Google Scholar 

  • Jeong HJ, Nam SJ, Song JY, Park SN (2019) Synthesis and physicochemical properties of pH-sensitive hydrogel based on carboxymethyl chitosan/2-hydroxyethyl acrylate for transdermal delivery of nobiletin. J Drug Deliv Sci Technol 51:194 –203

    Article  CAS  Google Scholar 

  • Jeznach O, Kołbuk D, Sajkiewicz P (2018) Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A 106:2762 –2776

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Tan ML, Taheri M, Yan Q, Tsuzuki T, Gardiner MG, Diggle B, Connal LA (2020) Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew Chem Int Ed 59:7049 –7056

    Article  CAS  Google Scholar 

  • Klouda L (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm 97:338 –349

    Article  CAS  PubMed  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34 –45

    Article  CAS  PubMed  Google Scholar 

  • Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng: R: Reports 93:1 –49

    Article  PubMed  Google Scholar 

  • Kundu J, Pati F, Hun Jeong Y, Cho D-W (2013) Chapter 2: biomaterials for biofabrication of 3D tissue scaffolds. In: Forgacs G, Sun W (eds) Biofabrication. William Andrew Publishing, Boston, MA

    Google Scholar 

  • Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A (2020) In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design. Heliyon 6:e05365

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer R, Peppas N (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J Macromol Sci Part C 23:61 –126

    Article  Google Scholar 

  • Lau HK, Kiick KL (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28 –42

    Article  CAS  PubMed  Google Scholar 

  • Lendlein A (2010) Polymers in biomedicine. Macromol Biosci 10:993 –997

    Article  CAS  PubMed  Google Scholar 

  • Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Scheiger JM, Levkin PA (2019) Design and applications of photoresponsive hydrogels. Adv Mater 31:1807333

    Article  Google Scholar 

  • Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6:4714 –4730

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224 –234

    Article  CAS  PubMed  Google Scholar 

  • Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2:603 –618

    Article  CAS  PubMed  Google Scholar 

  • Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379 –1408

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tang X, Wang Y, Guo S (2011) Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int J Pharm 414:6 –15

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu C, Sun X, Zhang S, Yuan Y, Wang D, Xu Y (2020) Fabrication and characterization of cold-gelation whey protein-chitosan complex hydrogels for the controlled release of curcumin. Food Hydrocoll 103:105619

    Article  CAS  Google Scholar 

  • López-Velázquez JC, Rodríguez-Rodríguez R, Espinosa-Andrews H, Qui-Zapata JA, García-Morales S, Navarro-López DE, Luna-Bárcenas G, Vassallo-Brigneti EC, García-Carvajal ZY (2019) Gelatin–chitosan–PVA hydrogels and their application in agriculture. J Chem Technol Biotechnol 94:3495 –3504

    Article  Google Scholar 

  • Lynch CR, Kondiah PPD, Choonara YE, Du Toit LC, Ally N, Pillay V (2020) Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol 8:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado RM, Palmeira-De-Oliveira A, Martinez-De-Oliveira J, Palmeira-De-Oliveira R (2013) Vaginal films for drug delivery. J Pharm Sci 102:2069 –2081

    Article  CAS  PubMed  Google Scholar 

  • Mahato KK, Yadav I, Singh RK, Singh M, Singh BN, Ray S, Ray B, Kumar M, Misra N (2019) Polyvinyl alcohol/chitosan lactate composite hydrogel for controlled drug delivery. Mater Res Exp 6:115408

    Google Scholar 

  • Mahmoudian M, Ganji F (2017) Vancomycin-loaded HPMC microparticles embedded within injectable thermosensitive chitosan hydrogels. Prog Biomater 6:49 –56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurface Biotribol 1:161 –176

    Article  Google Scholar 

  • Malekjani N, Jafari SM (2021) Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf 20:3 –47

    Article  CAS  PubMed  Google Scholar 

  • Manouras T, Vamvakaki M (2017) Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem 8:74 –96

    Article  CAS  Google Scholar 

  • Marques AC, Costa PJ, Velho S, Amaral MH (2021) Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discov Today 26:2397 –2405

    Article  CAS  PubMed  Google Scholar 

  • Matanović MR, Kristl J, Grabnar PA (2014) Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 472:262 –275

    Article  PubMed  Google Scholar 

  • Metters A, Lin C-C (2007) Biodegradable hydrogels: tailoring properties and function through chemistry and structure. In: Biomaterials. CRC Press, Boca Raton, FL

    Google Scholar 

  • Moss JA, Baum MM, Easley JT, Cox DM, Smith TJ (2017) An intravaginal ring for real-time evaluation of adherence to therapy. PLoS One 12:e0174729

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagase K, Yamato M, Kanazawa H, Okano T (2018) Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153:27 –48

    Article  CAS  PubMed  Google Scholar 

  • Narayan OP, Mu X, Hasturk O, Kaplan DL (2021) Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 121:214 –223

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24:603

    Article  PubMed Central  Google Scholar 

  • Nazar H, Fatouros DG, Van Der Merwe SM, Bouropoulos N, Avgouropoulos G, Tsibouklis J, Roldo M (2011) Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 77:225 –232

    Article  CAS  PubMed  Google Scholar 

  • Neuse EW (2008) Synthetic polymers as drug-delivery vehicles in medicine. Met Based Drugs 2008:469531

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen CT, Vu MQ, Phan TT, Vu TQ, Vo QA, Bach GL, Thai H (2020) Novel pH-sensitive hydrogel beads based on carrageenan and fish scale collagen for allopurinol drug delivery. J Polym Environ 28:1795 –1810

    Article  CAS  Google Scholar 

  • Nguyen DD, Lai J-Y (2020) Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem 11:6988 –7008

    Article  CAS  Google Scholar 

  • Niamlang S, Sirivat A (2009) Electric field assisted transdermal drug delivery from salicylic acid-loaded polyacrylamide hydrogels. Drug Deliv 16:378 –388

    Article  CAS  PubMed  Google Scholar 

  • Omidian H, Park K (2012) Hydrogels. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, Boston, MA

    Google Scholar 

  • Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Wee Toong T, Yi NJ, Win Yi L (2021) Promising drug delivery approaches to treat microbial infections in the vagina: A recent update. Polymers 13:26

    Article  CAS  Google Scholar 

  • Park SH, Shin HS, Park SN (2018) A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr Polym 200:341 –352

    Article  CAS  PubMed  Google Scholar 

  • Patil SB, Inamdar SZ, Das KK, Akamanchi KG, Patil AV, Inamadar AC, Reddy KR, Raghu AV, Kulkarni RV (2020) Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: synthesis, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 56:101525

    Article  CAS  Google Scholar 

  • Peña B, Laughter M, Jett S, Rowland TJ, Taylor MRG, Mestroni L, Park D (2018) Injectable hydrogels for cardiac tissue engineering. Macromol Biosci 18:1800079

    Article  Google Scholar 

  • Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75 –81

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169 –172

    Article  CAS  Google Scholar 

  • Perera MM, Fischesser DM, Molkentin JD, Ayres N (2019) Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polym Chem 10:6360 –6367

    Article  CAS  Google Scholar 

  • Permanadewi I, Kumoro AC, Wardhani DH, Aryanti N (2019) Modelling of controlled drug release in gastrointestinal tract simulation. J Phys Conf Ser 1295:012063

    Article  CAS  Google Scholar 

  • Pianowski ZL, Karcher J, Schneider K (2016) Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem Commun 52:3143 –3146

    Article  CAS  Google Scholar 

  • Pinelli F, Magagnin L, Rossi F (2020) Progress in hydrogels for sensing applications: a review. Mater Today Chem 17:100317

    Article  CAS  Google Scholar 

  • Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R (2021) Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review. Eur Polym J 145:110176

    Article  Google Scholar 

  • Pong FY, Lee M, Bell JR, Flynn NT (2006) Thermoresponsive behavior of poly(N-Isopropylacrylamide) hydrogels containing gold nanostructures. Langmuir 22:3851 –3857

    Article  CAS  PubMed  Google Scholar 

  • Pothakamury UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397 –406

    Article  CAS  Google Scholar 

  • Pourjavadi A, Kurdtabar M, Ghasemzadeh H (2008) Salt- and pH-resisting collagen-based highly porous hydrogel. Polym J 40:94 –103

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991 –1008

    Article  CAS  PubMed  Google Scholar 

  • Puoci F, Hampel S, Parisi OI, Hassan A, Cirillo G, Picci N (2013) Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drug-delivery systems. J Appl Polym Sci 130:829 –834

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49 –60

    Article  Google Scholar 

  • Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K (2019) Environment sensitive hydrogels for drug delivery applications. Eur Polym J 120:109220

    Article  CAS  Google Scholar 

  • Rapp TL, Deforest CA (2021) Targeting drug delivery with light: a highly focused approach. Adv Drug Deliv Rev 171:94 –107

    Article  CAS  PubMed  Google Scholar 

  • Rastogi SK, Anderson HE, Lamas J, Barret S, Cantu T, Zauscher S, Brittain WJ, Betancourt T (2018) Enhanced release of molecules upon ultraviolet (UV) light irradiation from photoresponsive hydrogels prepared from bifunctional azobenzene and four-arm poly(ethylene glycol). ACS Appl Mater Interfaces 10:30071 –30080

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism. Mater Selection Appl Polymers 9:137

    Google Scholar 

  • Rizzo F, Kehr NS (2021) Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater 10:2001341

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez R, Espinosa-Andrews H, Morales-Hernández N, Lobato-Calleros C, Vernon-Carter EJ (2019) Mesquite gum/chitosan insoluble complexes: relationship between the water state and viscoelastic properties. J Dispers Sci Technol 40:1345 –1352

    Article  Google Scholar 

  • Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY (2020a) Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater 69:1 –20

    Article  Google Scholar 

  • Rodríguez-Rodríguez R, Velasquillo-Martínez C, Knauth P, López Z, Moreno-Valtierra M, Bravo-Madrigal J, Jiménez-Palomar I, Luna-Bárcenas G, Espinosa-Andrews H, García-Carvajal ZY (2020b) Sterilized chitosan-based composite hydrogels: physicochemical characterization and in vitro cytotoxicity. J Biomed Mater Res A 108:81 –93

    Article  PubMed  Google Scholar 

  • Rogina A, Ressler A, Matić I, Gallego Ferrer G, Marijanović I, Ivanković M, Ivanković H (2017) Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr Polym 166:173 –182

    Article  CAS  PubMed  Google Scholar 

  • Setapa A, Ahmad N, Mohd Mahali S, Mohd Amin MCI (2020) Mathematical model for estimating parameters of swelling drug delivery devices in a two-phase release. Polymers 12:2921

    Article  CAS  PubMed Central  Google Scholar 

  • Sharadha M, Gowda DV, Vishal Gupta N, Akhila AR (2020) An overview on topical drug delivery system. Updated review. Int J Res Pharm Sci 11:368 –385

    Article  CAS  Google Scholar 

  • Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11:901 –915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, Boston, MA

    Google Scholar 

  • Siepmann J, Göpferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229 –247

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351 –362

    Article  CAS  PubMed  Google Scholar 

  • Silva RC, Trevisan MG, Garcia JS (2020) β-galactosidase encapsulated in carrageenan, pectin and carrageenan/pectin: comparative study, stability and controlled release. An Acad Bras Cienc 92:e20180609

    Article  CAS  PubMed  Google Scholar 

  • Soliman GM, Fetih G, Abbas AM (2017) Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation. Drug Dev Ind Pharm 43:399 –408

    Article  CAS  PubMed  Google Scholar 

  • Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR (2019) Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 24:1575 –1586

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Li P, Li Y-M, Wei Q, Tian L-H (2011) A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. J Biomed Mater Res B Appl Biomater 97B:175–183

    Article  CAS  Google Scholar 

  • Sun X, Agate S, Salem KS, Lucia L, Pal L (2021) Hydrogel-based sensor networks: compositions, properties, and applications – a review. ACS Appl Bio Mater 4:140 –162

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Xu C, Wu G, Ye Q, Wang C (2017) Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers 9:189

    Article  PubMed Central  Google Scholar 

  • Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z (2015) Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 22:145 –155

    Article  CAS  PubMed  Google Scholar 

  • Talantikite M, Stimpson TC, Gourlay A, Le-Gall S, Moreau C, Cranston ED, Moran-Mirabal JM, Cathala B (2021) Bioinspired thermoresponsive xyloglucan–cellulose nanocrystal hydrogels. Biomacromolecules 22:743 –753

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Floy M, Bhandari R, Sunkara M, Morris AJ, Dziubla TD, Hilt JZ (2017) Synthesis and characterization of thermoresponsive hydrogels based on N-isopropylacrylamide crosslinked with 4,4′-dihydroxybiphenyl diacrylate. ACS Omega 2:8723 –8729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Pan W, Su T, Zhang M, Dong W, Qi X (2020) Recent advances in natural polymer-based drug delivery systems. React Funct Polym 148:104501

    Article  CAS  Google Scholar 

  • Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813 –827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese SA, Rangappa SM, Siengchin S, Parameswaranpillai J (2020) Chapter 2: natural polymers and the hydrogels prepared from them. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, Amsterdam

    Google Scholar 

  • Vashist A, Kaushik A, Jayant RD, Vashist A, Ghosal A, Nair M (2017) Hydrogels: stimuli responsive to on-demand drug delivery systems. In: Kaushik A, Jayant RD, Nair M (eds) Advances in personalized nanotherapeutics. Springer, Cham

    Google Scholar 

  • Vasile C, Pamfil D, Stoleru E, Baican M (2020) New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 25:1539

    Article  CAS  PubMed Central  Google Scholar 

  • Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853 –2888

    Article  CAS  PubMed  Google Scholar 

  • Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60 –69

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Neumann M, Fu T, Li W, Cheng X, Su B-L (2018a) Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 38:135 –157

    Article  CAS  Google Scholar 

  • Wang Q, Wong C-H, Chan HYE, Lee W-Y, Zuo Z (2018b) Statistical design of experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int J Pharm 539:50 –57

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zuo Z, Cheung CKC, Leung SSY (2019) Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 559:86 –101

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-S, Li K, Gao L-N, Zhang Y, Lin K-M, Cui Y-L (2020) Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater Sci 8:2853 –2865

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang S, Wang H, Bie H (2017) A mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative diseases. PLoS One 12:e0189478

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J Functional Biomater 10:34

    Article  CAS  Google Scholar 

  • Xi L, Wang T, Zhao F, Zheng Q, Li X, Luo J, Liu J, Quan D, Ge J (2014) Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One 9:e100632

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 6:510 –517

    Article  CAS  PubMed  Google Scholar 

  • Yan T, Ma Z, Liu J, Yin N, Lei S, Zhang X, Li X, Zhang Y, Kong J (2021) Thermoresponsive genistein NLC-dexamethasone-moxifloxacin multi drug delivery system in lens capsule bag to prevent complications after cataract surgery. Sci Rep 11:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Chen Q, Zhu L, Chen H, Wei D, Chen F, Tang Z, Yang J, Zheng J (2017) High strength and self-healable gelatin/polyacrylamide double network hydrogels. J Mater Chem B 5:7683 –7691

    Article  CAS  PubMed  Google Scholar 

  • Yang T-T, Cheng Y-Z, Qin M, Wang Y-H, Yu H-L, Wang A-L, Zhang W-F (2017) Thermosensitive chitosan hydrogels containing polymeric microspheres for vaginal drug delivery. Biomed Res Int 2017:3564060

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu Y, Chen S, Cheong K-L, Teng B (2020) Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 246:116617

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-L, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678 –5688

    Article  CAS  PubMed  Google Scholar 

  • Yeh M-Y, Zhao J-Y, Hsieh Y-R, Lin J-H, Chen F-Y, Chakravarthy RD, Chung P-C, Lin H-C, Hung S-C (2017) Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Adv 7:21252 –21257

    Article  CAS  Google Scholar 

  • You J-O, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Lu Q, Yuan S, Zhang R, Wu Z (2017) Properties of thermoresponsive N-maleyl gelatin-co-P(N-isopropylacrylamide) hydrogel with ultrahigh mechanical strength and self-recovery. J Polym Res 24:190

    Article  Google Scholar 

  • Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, Vatankhah-Varnoosfaderani M, Gutiérrez TJ, Saeb MR (2019) Thermosensitive polymers in medicine: a review. Eur Polym J 117:402 –423

    Article  CAS  Google Scholar 

  • Zeb A, Arif ST, Malik M, Shah FA, Din FU, Qureshi OS, Lee E-S, Lee G-Y, Kim J-K (2019) Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Investig 49:485 –517

    Article  Google Scholar 

  • Zhang F, King MW (2020) Biodegradable polymers as the pivotal player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 9:1901358

    Article  CAS  Google Scholar 

  • Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H (2018) Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 25:278 –292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Wu S, Rader C, Ma J, Chen S, Yuan X, Foster EJ (2020) Crosslinked ionic alginate and cellulose-based hydrogels for Photoresponsive drug release systems. Fibers Polymers 21:45 –54

    Article  CAS  Google Scholar 

  • Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M (2020) Spatiotemporally controlled Photoresponsive hydrogels: design and predictive modeling from processing through application. Adv Funct Mater 30:2000639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio Rodríguez-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Rodríguez, R., Espinosa-Andrews, H., García-Carvajal, Z.Y. (2022). Stimuli-Responsive Hydrogels in Drug Delivery. In: Jana, S., Jana, S. (eds) Functional Biomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7152-4_3

Download citation

Publish with us

Policies and ethics