Skip to main content
Log in

Measurement-device-independent quantum secure direct communication

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) is a unique technique, which supports the secure transmission of confidential information directly through a quantum channel without the need for a secret key and for ciphertext. Hence this secure communication protocol fundamentally differs from its conventional counterparts. In this article, we report the first measurement-device-independent (MDI) QSDC protocol relying on sequences of entangled photon pairs and single photons. Explicitly, it eliminates the security loopholes associated with the measurement device. Additionally, this MDI technique is capable of doubling the communication distance of its conventional counterpart operating without using our MDI technique. We also conceive a protocol associated with linear optical Bell-basis measurements, where only two of the four Bell-basis states could be measured. When the number of qubits in a sequence reduces to 1, the MDI-QSDC protocol degenerates to a deterministic MDI quantum key distribution protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Rijmen, and J. Daemen, in Proceedings of Federal Information Processing Standards Publications, National Institute of Standards and Technology, 19 (2001).

  2. R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).

    Article  Google Scholar 

  3. C. H. Bennet, in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, Dec. 10–12, 1984 (IEEE, Bangalore, 1984).

    Google Scholar 

  4. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Rislakki, Int. J. Intell CounterIntell 21, 461 (2008).

    Article  Google Scholar 

  6. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002), arXiv: quant-ph/0012056.

    Article  ADS  Google Scholar 

  7. F. G. Deng, and G. L. Long, Phys. Rev. A 68, 042315 (2003).

    Article  ADS  Google Scholar 

  8. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).

    Article  ADS  Google Scholar 

  9. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016).

    Article  Google Scholar 

  10. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017).

    Article  ADS  Google Scholar 

  11. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

    Article  Google Scholar 

  12. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Light Sci. Appl. 8, 22 (2019).

    Article  ADS  Google Scholar 

  13. Z. Sun, R. Qi, Z. Lin, L. Yin, G.-L. Long, and J. Lu, in IEEE GLOBE-COM 2018 Workshops (2018).

  14. D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, and S. Lloyd, Phys. Rev. A 94, 022315 (2016).

    Article  ADS  Google Scholar 

  15. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, J. Opt. Soc. Am. B 36, B41 (2019).

    Article  Google Scholar 

  16. F. Massa, A. Moqanaki, F. Del Santo, B. Dakic, and P. Walther, arXiv: 1802.05102.

  17. C. H. F. Fung, B. Qi, K. Tamaki, and H. K. Lo, Phys. Rev. A 75, 032314 (2007).

    Article  ADS  Google Scholar 

  18. F. Xu, B. Qi, and H. K. Lo, New J. Phys. 12, 113026 (2010).

    Article  ADS  Google Scholar 

  19. Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, Phys. Rev. A 78, 042333 (2008).

    Article  ADS  Google Scholar 

  20. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2010).

    Article  ADS  Google Scholar 

  21. A. Meda, I. P. Degiovanni, A. Tosi, Z. Yuan, G. Brida, and M. Genovese, Light Sci. Appl. 6, e16261 (2017).

    Article  Google Scholar 

  22. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  23. J. Li, F. Q. Sun, Z. S. Pan, J. R. Nie, Y. H. Chen, and K. G. Yuan, Chin. Phys. Lett. 32, 080301 (2015).

    Article  ADS  Google Scholar 

  24. H. Lu, C. H. F. Fung, X. Ma, and Q. Cai, Phys. Rev. A 84, 042344 (2011).

    Article  ADS  Google Scholar 

  25. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Article  Google Scholar 

  26. P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

    Article  ADS  Google Scholar 

  27. H. Lu, J. Opt. Soc. Am. B 36, B26 (2019).

    Article  Google Scholar 

  28. W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).

    Article  ADS  Google Scholar 

  29. X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  30. H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  31. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, and G. L. Long, arXiv: 1805.07228.

  32. Z. Gao, T. Li, and Z. Li, Europhys. Lett. 125, 40004 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiuGuo Yin or GuiLu Long.

Additional information

This work was supported by the National Basic Research Program of China (Grant Nos. 2017YFA0303700, and 2015CB921001), the National Natural Science Foundation of China (Grant Nos. 61726801, 11474168, 11974189, and 11474181). Lajos Hanzo would like to thank the European Research Council for the fiscal support of his Advanced Fellow Grant QuantCom. The helpful suggestions of Dr Chitra Shukla are also gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Sheng, Y., Niu, P. et al. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020). https://doi.org/10.1007/s11433-019-1450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1450-8

Keywords

Navigation