Skip to main content
Log in

Self-consistent effective-one-body theory for spinless binaries based on post-Minkowskian approximation I: Hamiltonian and decoupled equation for \(\psi _4^{\rm{B}}\)

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

To build a self-consistent effective-one-body (EOB) theory, in which the Hamiltonian, radiation-reaction force and waveform for the “plus” and “cross” modes of the gravitational wave should be based on the same effective background spacetime, the key step is to look for the decoupled equation for \(\psi _4^{\rm{B}} = {\ddot h_ +} - {\rm{i}}{\ddot h_ \times}\), which seems a very difficult task because there are non-vanishing tetrad components of the tracefree Ricci tensor for such spacetime. Fortunately, based on an effective spacetime obtained in this paper by using the post-Minkowskian (PM) approximation, we find the decoupled equation for \(\psi _4^{\rm{B}}\) by dividing the perturbation part of the metric into the odd and even parities. With the effective metric and decoupled equation at hand, we set up a frame of self-consistent EOB model for spinless binaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Über Gravitationswellen, in Sitzungsberichte der Preussischen Akademie der Wissenschaften (Nabu Press, Berlin, 1918).

    Google Scholar 

  2. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. R. Soc. Lond. A 269, 21 (1962).

    Article  ADS  Google Scholar 

  3. R. K. Sachs, Proc. R. Soc. Lond. A 270, 103 (1962).

    Article  ADS  Google Scholar 

  4. P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montray, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and N. Vittorio, Nature 404, 955 (2000), arXiv: astro-ph/0004404.

    Article  ADS  Google Scholar 

  5. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. Ser. 192, 18 (2011), arXiv: 1001.4538.

    Article  ADS  Google Scholar 

  6. S. Perlmutter, G. Aldering, M. D. Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, R. A. Knop, C. Lidman, R. G. McMahon, P. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, P. Ruiz-Lapuente, B. Schaefer, and N. Walton, Nature 391, 51 (1998), arXiv: astro-ph/9712212.

    Article  ADS  Google Scholar 

  7. Y. Zou, M. Wang, and J. Jing, Sci. China-Phys. Mech. Astron. 64, 250411 (2021).

    Article  ADS  Google Scholar 

  8. X. K. He, J. L. Jing, and Z. J. Cao, Sci. China-Phys. Mech. Astron. 62, 110422 (2019).

    Article  ADS  Google Scholar 

  9. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  10. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.

    Article  ADS  Google Scholar 

  11. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.

    Article  ADS  Google Scholar 

  12. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.

    Article  ADS  Google Scholar 

  13. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  14. B. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaborations), Phys. Rev. X 9, 031040 (2019), arXiv: 1811.12907.

    Google Scholar 

  15. R. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), Phys. Rev. X 11, 021053 (2021), arXiv: 2010.14527.

    Google Scholar 

  16. R. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), arXiv: 2105.15120.

  17. R. P. Abbott, et al. (LIGO Scientific Collaboration, and Virgo Collaboration), arXiv: 2110.09834.

  18. A. H. Nitz, C. D. Capano, S. Kumar, Y. F. Wang, S. Kastha, M. Schafer, R. Dhurkunde, and M. Cabero, arXiv: 2105.09151.

  19. A. Buonanno, and T. Damour, Phys. Rev. D 59, 084006 (1999), arXiv: gr-qc/9811091.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Buonanno, and T. Damour, Phys. Rev. D 62, 064015 (2000), arXiv: gr-qc/0001013.

    Article  ADS  Google Scholar 

  21. T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 62, 084011 (2000), arXiv: gr-qc/0005034.

    Article  ADS  Google Scholar 

  22. T. Damour, Phys. Rev. D 64, 124013 (2001), arXiv: gr-qc/0103018.

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74, 104005 (2006), arXiv: gr-qc/0508067.

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 91, 084024 (2015), arXiv: 1502.07245.

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D 75, 124018 (2007), arXiv: gr-qc/0610122.

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Pan, A. Buonanno, J. G. Baker, J. Centrella, B. J. Kelly, S. T. McWilliams, F. Pretorius, and J. R. van Meter, Phys. Rev. D 77, 024014 (2008), arXiv: 0704.1964.

    Article  ADS  Google Scholar 

  27. A. Buonanno, Y. Pan, J. G. Baker, J. Centrella, B. J. Kelly, S. T. McWilliams, and J. R. van Meter, Phys. Rev. D 76, 104049 (2007), arXiv: 0706.3732.

    Article  ADS  Google Scholar 

  28. T. Damour, and A. Nagar, Phys. Rev. D 77, 024043 (2008), arXiv: 0711.2628.

    Article  ADS  Google Scholar 

  29. T. Damour, A. Nagar, E. N. Dorband, D. Pollney, and L. Rezzolla, Phys. Rev. D 77, 084017 (2008), arXiv: 0712.3003.

    Article  ADS  Google Scholar 

  30. M. Boyle, A. Buonanno, L. E. Kidder, A. H. Mroué, Y. Pan, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 78, 104020 (2008), arXiv: 0804.4184.

    Article  ADS  Google Scholar 

  31. T. Damour, A. Nagar, M. Hannam, S. Husa, and B. Brügmann, Phys. Rev. D 78, 044039 (2008), arXiv: 0803.3162.

    Article  ADS  Google Scholar 

  32. A. Buonanno, Y. Pan, H. P. Pfeiffer, M. A. Scheel, L. T. Buchman, and L. E. Kidder, Phys. Rev. D 79, 124028 (2009), arXiv: 0902.0790.

    Article  ADS  Google Scholar 

  33. Y. Pan, A. Buonanno, L. T. Buchman, T. Chu, L. E. Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 81, 084041 (2010), arXiv: 0912.3466.

    Article  ADS  Google Scholar 

  34. T. Damour, and A. Nagar, Phys. Rev. D 79, 081503(R) (2009), arXiv: 0902.0136.

    Article  ADS  Google Scholar 

  35. Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E. Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 84, 124052 (2011), arXiv: 1106.1021.

    Article  ADS  Google Scholar 

  36. E. Barausse, A. Buonanno, S. A. Hughes, G. Khanna, S. O–Sullivan, and Y. Pan, Phys. Rev. D 85, 024046 (2012), arXiv: 1110.3081.

    Article  ADS  Google Scholar 

  37. A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle, T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 86, 024011 (2012), arXiv: 1202.0790.

    Article  ADS  Google Scholar 

  38. A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, B. Szilágyi, N. W. Taylor, and A. Zenginoglu, Phys. Rev. D 89, 061502 (2014), arXiv: 1311.2544.

    Article  ADS  Google Scholar 

  39. A. Bohé, L. Shao, A. Taracchini, A. Buonanno, S. Babak, I. W. Harry, I. Hinder, S. Ossokine, M. Pürrer, V. Raymond, T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace, M. A. Scheel, and B. Szilágyi, Phys. Rev. D 95, 044028 (2017), arXiv: 1611.03703.

    Article  ADS  Google Scholar 

  40. Z. Cao, and W. B. Han, Phys. Rev. D 96, 044028 (2017), arXiv: 1708.00166.

    Article  ADS  Google Scholar 

  41. T. Damour, Phys. Rev. D 94, 104015 (2016), arXiv: 1609.00354.

    Article  ADS  MathSciNet  Google Scholar 

  42. Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P. Solon, and M. Zeng, Phys. Rev. Lett. 122, 201603 (2019), arXiv: 1901.04424.

    Article  ADS  Google Scholar 

  43. Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P. Solon, and M. Zeng, J. High Energ. Phys. 2019(10), 206 (2019).

    Article  ADS  Google Scholar 

  44. G. Kalin, and R. A. Porto, arXiv: 2006.01184.

  45. G. Kälin, Z. Liu, and R. A. Porto, Phys. Rev. Lett. 125, 261103 (2020), arXiv: 2007.04977.

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Dalpa, G. Kalin, Z. Liu, and R. A. Porto, arXiv: 2106.08276.

  47. D. Bini, and T. Damour, Phys. Rev. D 98, 044036 (2018), arXiv: 1805.10809.

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Newman, and R. Penrose, J. Math. Phys. 3, 566 (1962).

    Article  ADS  Google Scholar 

  49. J. E. Thompson, H. Chen, and B. F. Whiting, Class. Quantum Grav. 34, 174001 (2017), arXiv: 1611.06214.

    Article  ADS  Google Scholar 

  50. M. Carmeli, Classical Fields: General Relativity and Gauge Theory (Wiley, New York, 1982).

    MATH  Google Scholar 

  51. M. Maggiore, Gravitational Wave (Oxford University Press, Oxford, 2008).

    Google Scholar 

  52. L. E. Kidder, Phys. Rev. D 77, 044016 (2008), arXiv: 0710.0614.

    Article  ADS  Google Scholar 

  53. E. Poisson, Phys. Rev. D 47, 1497 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  54. C. Cutler, L. S. Finn, E. Poisson, and G. J. Sussman, Phys. Rev. D 47, 1511 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Sasaki, Prog. Theor. Phys. 92, 17 (1994), arXiv: gr-qc/9402042.

    Article  ADS  Google Scholar 

  56. H. Tagoshi, and M. Sasaki, Prog. Theor. Phys. 92, 745 (1994), arXiv: gr-qc/9405062.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiliang Jing or Jieci Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12035005, 12122504, and 11875025), and National Key Research and Development Program of China (Grant No. 2020YFC2201400). We would like to thank professors S. Chen and Q. Pan for useful discussions on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, J., Chen, S., Sun, M. et al. Self-consistent effective-one-body theory for spinless binaries based on post-Minkowskian approximation I: Hamiltonian and decoupled equation for \(\psi _4^{\rm{B}}\). Sci. China Phys. Mech. Astron. 65, 260411 (2022). https://doi.org/10.1007/s11433-022-1885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1885-6

Keywords

PACS number(s)

Navigation