Skip to main content
Log in

Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling

  • Article
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme to generate an entangled state between two spatially separated movable mirrors by injecting the two-mode squeezed optical reservoir to the dissipative optomechanics, in which the movable mirrors can modulate the linewidth of the cavity modes. When the coupling between the mirrors and the corresponding cavity modes is weak, the two driven cavity fields can respectively behave as the squeezed-vacuum reservoir for the two movable mirrors by utilizing the effect of completely destructive interference of quantum noise. Thus the mechanical modes are prepared in a two-mode squeezed vacuum state. Moreover, when the coupling between the two mirrors and the cavities modes is strong, the entanglement between the two movable mirrors decreases because photonic excitation can preclude the completely destructive interference of quantum noise, but the movable mirrors are still entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gigan S, Böhm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444: 67–70

    Article  ADS  Google Scholar 

  2. Arcizet O, Cohadon P F, Briant T, et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444: 71–74

    Article  ADS  Google Scholar 

  3. Liu Y C, Xiao Y F, Luan X S, et al. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys Rev Lett, 2013, 110: 153606

    Article  ADS  Google Scholar 

  4. Xiong H, Si L G, Lu X Y, et al. Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. Opt Lett, 2013, 38: 353

    Article  ADS  Google Scholar 

  5. Guo Y J, Li K, Nie W J, et al. Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys Rev A, 2014, 90: 053841

    Article  ADS  Google Scholar 

  6. Wang H, Gu Y, Liu Y X, et al. Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys Rev A, 2014, 90: 023817

    Article  ADS  Google Scholar 

  7. Chen B, Jiang C, Li J J, et al. All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate. Phys Rev A, 2011, 84: 055802

    Article  ADS  Google Scholar 

  8. Dong C H, Fiore V, Kuzyk M C, et al. Optomechanical dark mode. Science, 2012, 338: 1609

    Article  ADS  Google Scholar 

  9. Gorodetksy M L, Schliesser A, Anetsberger G, et al. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt Express, 2010, 18: 23236–23246

    Article  ADS  Google Scholar 

  10. Fu H, Mao T H, Li Y, et al. Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Appl Phy Lett, 2014, 105: 014108

    Article  ADS  Google Scholar 

  11. Abramovici A, Althouse WE, Drever RWP, et al. LIGO: The laser interferometer gravitational-wave observatory. Science, 1992, 256: 325–333

    Article  ADS  Google Scholar 

  12. Ma Y Q, Danilishin S L, Zhao C N, et al. Narrowing the Filter-cavity bandwidth in gravitational-wave Detectors via optomechanical interaction. Phys Rev Lett, 2014, 113: 151102

    Article  ADS  Google Scholar 

  13. Vitali D, Mancini S, Tombesi P, et al. Optomechanical scheme for the detection of weak impulsive forces. Phys Rev A, 2004, 64: 051401

    Article  ADS  Google Scholar 

  14. Dong C H, Shen Z, Zou C L, et al. Interconversion of photon-phonon in a silica optomechanical microresonator. Sci China-Phy Mech Astron, 2015, 58: 050308

    Google Scholar 

  15. Liu Y C, Xiao Y F, Chen Y L, et al. Parametric down-conversion and Polariton pair generation in optomechanical systems. Phys Rev Lett, 2013, 111: 083601

    Article  ADS  Google Scholar 

  16. Habraken S J M, Lechner W, Zoller P, et al. Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Phys Rev A, 2013, 87: 053808

    Article  ADS  Google Scholar 

  17. Elste F, Girvin S M, Clerk A A, et al. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys Rev Lett, 2009, 102: 207209

    Article  ADS  Google Scholar 

  18. Braginsky V B, Strigin S E, Vyatchanin S P, et al. Parametric oscillatory instability in Fabry-Perot interferometer. Phys Lett A, 2001, 287: 331–338

    Article  ADS  Google Scholar 

  19. Schliesser A, DelHaye P, Nooshi N, et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys Rev Lett, 2006, 97: 243905

    Article  ADS  Google Scholar 

  20. Wilson-Rae I, Nooshi N, Zwerger W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys Rev Lett, 2007, 99: 093901

    Article  ADS  Google Scholar 

  21. Teufel J D, Donner T, Li Dale, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 2011, 475: 359–363

    Article  ADS  Google Scholar 

  22. Safavi-Naeini A H, Chan J. Observation of quantum motion of a nanomechanical resonator. Phys Rev Lett, 2012, 108: 033602

    Article  ADS  Google Scholar 

  23. Zhang P, Wang Y D, Sun C P, et al. Cooling mechanism for a nanomechanical resonator by periodic coupling to a cooper pair box. Phys Rev Lett, 2005, 95: 097204

    Article  ADS  Google Scholar 

  24. Wang X T, Vinjanampathy S, Strauch F W, et al. Ultraefficient cooling of resonators: Beating sideband cooling with quantum control. Phys Rev Lett, 2011, 107: 177204

    Article  ADS  Google Scholar 

  25. Xia K Y, Evers J. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. Phys Rev Lett, 2009, 103: 227203

    Article  ADS  Google Scholar 

  26. Rabl P, Cappellaro P, Gurudev Dutt M V, et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys Rev B, 2009, 79: 041302

    Article  ADS  Google Scholar 

  27. Zhang J Q, Zhang S, Zou J H, et al. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Opt Express, 2013, 21: 29695–29710

    Article  Google Scholar 

  28. Genes C, Ritsch H, Drewsen M, et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency. Phys Rev B, 2011, 84: 051801

    Article  ADS  Google Scholar 

  29. Morigi G, Eschner J, Keitel C H, et al. Ground state laser cooling using electromagnetically induced transparency. Phys Rev Lett, 2000, 85: 4458–4461

    Article  ADS  Google Scholar 

  30. Evers J, Keitel C H. Double-EIT ground-state laser cooling without blue-sideband heating. Europhys Lett, 2000, 68: 370–376

    Article  ADS  Google Scholar 

  31. Schmidt-Kaler F, Eschner J, Morigi G, et al. Laser cooling with electromagnetically induced transparency: Application to trapped samples of ions or neutral atoms. Appl Phys B, 2001, 73: 807–814

    Article  ADS  Google Scholar 

  32. Fleischhauer M, Imamoglu A, Marangos J P, et al. Electromagnetically induced transparency: Optics in coherent media. Rev Mod Phys, 2005, 77: 633–673

    Article  ADS  Google Scholar 

  33. Zhang S, Zhang J Q, Zhang J, et al. Ground state cooling of an optomechanical resonator assisted by a λ-type atom. Opt Express, 2014, 22: 28118–28131

    Article  ADS  Google Scholar 

  34. Xuereb A, Schnabel R, Hammerer K, et al. Dissipative optomechanics in a Michelson-Sagnac interferometer. Phys Rev Lett, 2011, 107: 213604

    Article  ADS  Google Scholar 

  35. Brooks D W C, Botter T, Schreppler S, et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 2012, 488: 476–480

    Article  ADS  Google Scholar 

  36. Safavi-Naeini A H, Gröblacher S, Hill J T, et al. Squeezed light from a silicon micromechanical resonator. Nature, 2012, 500: 185–189

    Article  ADS  Google Scholar 

  37. Purdy T P, Yu P L, Peterson R W, et al. Strong optomechanical squeezing of light. Phys Rev X, 2013, 3: 031012

    Google Scholar 

  38. Clerk A A, Marquardt F, Jacobs K, et al. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J Phys, 2008, 10: 095010

    Article  Google Scholar 

  39. Ian H, Gong Z R, Liu Y X, et al. Cavity optomechanical coupling assisted by an atomic gas. Phys Rev A, 2008, 78: 013824

    Article  ADS  Google Scholar 

  40. Jähne K, Genes C, Hammerer K, et al. Cavity-assisted squeezing of a mechanical oscillator. Phys Rev A, 2009, 79: 063819

    Article  ADS  Google Scholar 

  41. Farace A, Giovannetti V. Enhancing quantum effects via periodic modulations in optomechanical systems. Phys Rev A, 2012, 86: 013820

    Article  ADS  Google Scholar 

  42. Rogers B, Paternostro M, Palma G M, et al. Entanglement control in hybrid optomechanical systems. Phys Rev A, 2012, 86: 042323

    Article  ADS  Google Scholar 

  43. Gu W J, Li G X. Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system. Opt Express, 2013, 21: 20423–20440

    Article  ADS  Google Scholar 

  44. Vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys Rev Lett, 2007, 98: 030405

    Article  ADS  Google Scholar 

  45. Wang Y D, Clerk A A. Reservoir-engineered entanglement in optomechanical systems. Phys Rev Lett, 2013, 110: 253601

    Article  ADS  Google Scholar 

  46. Abdi M, Pirandola S, Tombesi P, et al. Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys Rev Lett, 2012, 109: 143601

    Article  ADS  Google Scholar 

  47. Kuzyk M C, Enk S J V, Wang H, et al. Generating robust optical entanglement in weak-coupling optomechanical systems. Phys Rev A, 2013, 88: 062341

    Article  ADS  Google Scholar 

  48. Wang C, He L Y, Zhang Y, et al. Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Sci China-Phy Mech Astron, 2013, 56: 2054–2058

    Article  ADS  MathSciNet  Google Scholar 

  49. Liu Y M. Virtual-photon-induced entanglement with two nitrogenvacancy centers coupled to a high-Q silica microsphere cavity. Sci China-Phy Mech Astron, 2014, 56: 2138–2142

    Article  ADS  Google Scholar 

  50. Nie W J, Lan Y H, Li Y, et al. Generating large steady-state optomechanical entanglement by the action of Casimir force. Sci China-Phy Mech Astron, 2013, 57: 2276–2284

    Article  ADS  Google Scholar 

  51. Mancini S, Giovannetti V, Vitali D, et al. Entangling macroscopic oscillators exploiting radiation pressure. Phys Rev Lett, 2002, 88: 120401

    Article  ADS  Google Scholar 

  52. Pinard M, Dantan A, Vitali D, et al. Entangling movable mirrors in a double-cavity system. Europhys Lett, 2005, 72: 747–753

    Article  ADS  Google Scholar 

  53. Niedenzu W, Sandner R M, Genes C, et al. Quantum-correlated motion and heralded entanglement of distant optomechanically coupled objects. JPB-At Mol Opt Phys, 2012, 45: 245501

    Article  ADS  Google Scholar 

  54. Gu W J, Li G X, Yang Y P, et al. Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys Rev A, 2013, 88: 013835

    Article  ADS  Google Scholar 

  55. Weiss T, Bruder C, Nunnenkamp A, et al. Strong-coupling effects in dissipatively coupled optomechanical systems. Rev Mod Phys, 2010, 82: 1155

    Article  Google Scholar 

  56. Aloufi K, Bougouffa S, Ficek Z, et al. Dynamics of entangled states in squeezed reservoirs. arXiv:1403.3892

  57. Weiss T, Nunnenkamp A. Quantum limit of laser cooling in dispersively and dissipatively couped optomechanical systems. Phys Rev A, 2013, 88: 023850

    Article  ADS  Google Scholar 

  58. Gardiner C, Zoller P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. New York: Springer, 2000

    Book  Google Scholar 

  59. Xiong H, Si L G, Lv X Y, et al. Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phy Mech Astron, 2015, 58: 050302

    Google Scholar 

  60. Tanaś R, Ficek Z. Stationary two-atom entanglement induced by noclassical two-photon correlations. J Opt B-Quantum Semicl Opt, 2004, 6: S610–S617

    Article  ADS  Google Scholar 

  61. Scully M O, Zubairy M S. Quantum Optics. Cambridge: Cambrige University Press, 1997

    Book  Google Scholar 

  62. Schumaker B L, Caves C M. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys Rev A, 1985, 31: 3093–3111

    Article  ADS  MathSciNet  Google Scholar 

  63. Reid M D, Drummond P D, Bowen W P, et al. The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev Mod Phys, 2009, 81: 1727

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Giovannetti V, Mancini S, Tombesi P, et al. Radiation pressure induced Einstein-Podolsky-Rosen paradox. Europhys Lett, 2001, 54: 559–565

    Article  ADS  Google Scholar 

  65. Duan L M, Giedke G, Cirac J I, et al. Inseparability criterion for continuous variable systems. Phys Rev Lett, 2000, 84: 2722–2725

    Article  ADS  Google Scholar 

  66. Sawadsky A, Kaufer H, Nia R M, et al. Observation of generalized optomechanical coupling and cooling on cavity resonance. Phys Rev Lett, 2015, 114: 043601

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GaoXiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Gu, W. & Li, G. Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Sci. China Phys. Mech. Astron. 58, 1–8 (2015). https://doi.org/10.1007/s11433-015-5647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5647-x

Keywords

Navigation