Skip to main content
Log in

Entanglement and Output Squeezing of Distant Optomechanical Systems Generated by Four-Level Atoms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A scheme is presented to generate entanglement of optical andmechanical modes in coupled cavity optomechanical system with two four-level atoms. Two distant movable mirrors and two cavity modes as well as mirror and the adjacent or the distant cavity mode are all entangled, and the entanglement curve of two movable mirrors is a symmetrical distribution when ∆ is equal to ωm. Furthermore, we also investigate the output entanglement of two cavity fields, and find the squeezing spectrum is affected by the mirror frequency and the Rabi frequency of laser field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouwmeester, D., Ekert, A., Zeilinger, A.: Springer, Berlin (2000)

    Google Scholar 

  2. Nielson, M.A., Chuang, I.L.: Cambridge University, Cambridge (2000)

    Google Scholar 

  3. Massel, F.: Phys. Rev. A 95, 063816 (2017)

    Article  ADS  Google Scholar 

  4. Yang, X.H., Yin, Z.Y., Xiao. M.: Phys. Rev. A 99, 013811 (2019)

    Article  ADS  Google Scholar 

  5. Teklu, B., Byrnes, T., Khan, F.S.: Phys. Rev. A 97, 023829 (2018)

    Article  ADS  Google Scholar 

  6. Liao, C.G., Chen, R.X., Xie, H., Lin, X.M.: Phys. Rev. A 97, 042314 (2018)

    Article  ADS  Google Scholar 

  7. Cheng, J., Zhang, W.Z., Han, Y., Zhou, L.: Sci. Rep. 6, 23678 (2016)

    Article  ADS  Google Scholar 

  8. Wang, Y.D., Chesi, S., Clerk, A.A.: Phys. Rev. A 91, 013807 (2015)

    Article  ADS  Google Scholar 

  9. Liao, J.Q., Wu, Q.Q., Nori, F.: Phys. Rev. A 89, 014302 (2014)

    Article  ADS  Google Scholar 

  10. Chen, R.X., Shen, L.T., Yang, Z.B., Wu, H.Z., Zheng, S.B.: Phys. Rev. A 89, 023843 (2014)

    Article  ADS  Google Scholar 

  11. Huang, S.M., Chen, A.X.: Phys. Rev. A 98, 063843 (2018)

    Article  ADS  Google Scholar 

  12. Chakraborty, S., Sarma, A.K.: Phys. Rev. A 97, 022336 (2018)

    Article  ADS  Google Scholar 

  13. Zhou, L., Cheng, J., Han, Y., Zhang, W.P.: Phys. Rev. A 88, 063854 (2013)

    Article  ADS  Google Scholar 

  14. Chauhan, A.K., Biswas, A.: Phys. Rev. A 95, 023813 (2017)

    Article  ADS  Google Scholar 

  15. Mann, N., Thorwart, M.: Phys. Rev. A 98, 063804 (2018)

    Article  ADS  Google Scholar 

  16. Li, X.Y., Nie, W.J., Chen, A.X., Lan, Y.H.: Phys. Rev. A 96, 063819 (2017)

    Article  ADS  Google Scholar 

  17. Zhou, L., Han, Y., Jing, J.T., Zhang, W.P.: Phys. Rev. A 83, 052117 (2011)

    Article  ADS  Google Scholar 

  18. Zhang, Q.K., Zhang, X.Y., Liu, L.Z.: Phys. Rev. A 96, 042320 (2017)

    Article  ADS  Google Scholar 

  19. Teklu, B., Byrnes, T., Khan, F.S.: Phys. Rev. A 97, 023829 (2018)

    Article  ADS  Google Scholar 

  20. Mckeever, J., Boca, A., Boozer, A.D., Buck, J.R.: Nature (London) 425, 268 (2003)

    Article  ADS  Google Scholar 

  21. Cho, J., Angelakis, D.G., Bose, S.: Phys. Rev. A 78, 022323 (2008)

    Article  ADS  Google Scholar 

  22. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, London (1997)

    Book  Google Scholar 

  23. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  24. DeJesus, E.X., Kaufman, C.: Phys. Rev. A 35, 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  25. Genes, C., Mari, A., Tombesi, P., Vitali, D.: Phys. Rev. A 78, 032316 (2008)

    Article  ADS  Google Scholar 

  26. Adesso, G., Serafini, A., Illuminati, F.: Phys. Rev. A 70, 022318 (2004)

    Article  ADS  Google Scholar 

  27. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  28. Adesso, G., Illuminati, F.: J. Phys. A: At. Math. Theor. 40, 7821 (2007)

    Article  ADS  Google Scholar 

  29. Serafini, A., Adesso, G., Illuminati, F.: Phys. Rev. A. 71, 032349 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhou, L., Mu, Q.X., Liu, Z.J.: Phys. Lett. A. 373, 2017 (2009)

    Article  ADS  Google Scholar 

  31. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2000)

    MATH  Google Scholar 

  32. Gröblscher, S., Hammerer, K., Vanner, M.R., Aspelmeye, M.: Nature (London) 460, 274 (2009)

    Article  Google Scholar 

  33. Mazzola, L., Paternostro, M.: Phys. Rev. A 83, 062335 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The project was supported by the NSFC (Grants No.11704042, No. 51702003 and No. 51502005), the Anhui Provincial Natural Science Foundation (No. 1808085ME130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Pan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of the Mean Values

We now calculate the zero order \({\sigma }_{ii^{\prime }}^{j0}\)\((i,i^{\prime }=e,f,g,h,j=1,2)\) in (4). With the help of laser linear approximation theory, the classical fields will be treated to all orders in the Rabi frequency Ω, while the atomic transitions \(|e\rangle \leftrightarrow |g\rangle \) and \(|f\rangle \leftrightarrow |h\rangle \) are treated to first order in the coupling constants g. Including the damping terms, we can obtain the quantum Langevin equations of the atom

$$ \begin{array}{@{}rcl@{}} \dot{\sigma}_{ge}^{j} &=&-\left[{{\gamma}_{1}^{j}}+{{\gamma}_{2}^{j}}+i\left( \delta_{j}-{\omega}_{gh}^{j}\right)\right]{\sigma}_{ge}^{j} -i{\Omega}_{1}{\sigma}_{gh}^{j}+i{\Omega}_{2}{\sigma}_{fe}^{j}, \\ \dot{\sigma}_{hf}^{j} &=&-\left[{{\gamma}_{3}^{j}}+{{\gamma}_{4}^{j}}+i\left( {\Delta}_{j}+{\omega}_{gh}^{j}\right)\right]{\sigma}_{hf}^{j} +i{\Omega}_{1}{\sigma}_{ef}^{j}-i{\Omega}_{2}{\sigma}_{hj}^{j}, \\ \dot{\sigma}_{gh}^{j} &=&-i{\omega}_{gh}^{j}{\sigma}_{gh}^{j}-i{\Omega}_{1}{\sigma}_{ge}^{j}+i{\Omega}_{2}{\sigma}_{fh}^{j}+ig_{1}{\sigma}_{eh}^{j}a_{j} \\ &&-ig_{1}{\sigma}_{eh}^{j}{a}_{j}^{\dagger}, \\ \dot{\sigma}_{ef}^{j} &=&-\left[{{\gamma}_{1}^{j}}+{{\gamma}_{2}^{j}}+{{\gamma}_{3}^{j}}+{{\gamma}_{4}^{j}}+i\left( \delta_{j}-{\Delta}_{j}-{\omega}_{gh}^{j}\right)\right]{\sigma}_{ef}^{j} \\ &&+i{\Omega}_{1}{\sigma}_{hf}^{j}-i{\Omega}_{2}{\sigma}_{eg}^{j}+ig_{1}{\sigma}_{gf}^{j}{a}_{j}^{\dagger}-ig_{2}{\sigma}_{eh}^{j}a_{j}. \end{array} $$
(A1)

Solving steady state solution of above equation, we have the zero order \({\sigma }_{ii^{\prime }}^{j0}\) of the atom as

$$ \begin{array}{@{}rcl@{}} {\sigma}_{ee}^{j0} &=& \frac{{{\Omega}_{1}^{2}}{{\Omega}_{2}^{2}}\gamma_{4}}{P_{3}}, \\ {\sigma}_{ff}^{j0} &=& \frac{{{\Omega}_{1}^{2}}{{\Omega}_{2}^{2}}\gamma_{2}}{P_{3}}, \\ {\sigma}_{gg}^{j0} &=& \frac{\left( |P_{2}|^{2}+{{\Omega}_{2}^{2}}\right){{\Omega}_{1}^{2}}\gamma_{2}}{P_{3}}, \\ {\sigma}_{hh}^{j0} &=& \frac{\left( |P_{1}|^{2}+{{\Omega}_{1}^{2}}\right){{\Omega}_{2}^{2}}\gamma_{4}}{P_{3}}, \\ {\sigma}_{eh}^{j0} &=& \frac{i {P}_{1}^{\ast}{\Omega}_{1}{{\Omega}_{2}^{2}}\gamma_{4}}{P_{3}}, \\ {\sigma}_{fg}^{j0} &=& \frac{i {P}_{2}^{\ast}{\Omega}_{2}{{\Omega}_{1}^{2}}\gamma_{2}}{P_{3}}. \end{array} $$
(A2)

with

$$ \begin{array}{@{}rcl@{}} P_{1}&=&\gamma_{1}+\gamma_{2}-i\delta_{1}, P_{2}=\gamma_{3}+\gamma_{4}-i\delta_{2}, \\ P_{3}&=&\gamma_{4}|P_{1}|^{2}{{\Omega}_{2}^{2}}+2(\gamma_{2}+\gamma_{4}){{\Omega}_{1}^{2}}{{\Omega}_{2}^{2}} +\gamma_{2}|P_{2}|^{2}{{\Omega}_{1}^{2}}. \end{array} $$
(A3)

Substituting the zero-order approximation \(\sigma _{ii^{\prime }}^{j0}\) into (A1), σge and σhf can be obtained

$$ \begin{array}{@{}rcl@{}} {\sigma}_{ge}^{j}&=&\frac{({P}_{6}^{\ast}D_{1}+P_{5}D_{2}){a}_{j}^{\dagger}+({P}_{6}^{\ast}D_{3}-P_{5}D_{4}){a}_{j}^{\dagger}} {{P}_{4}^{\ast}P_{5}-{{P}_{6}^{2}}}, \\ {\sigma}_{hf}^{j}&=&\frac{(P_{6}{D}_{4}^{\ast}-P_{4}{D}_{3}^{\ast}){a}_{j}^{\dagger}-(P_{6}{D}_{2}^{\ast}+P_{4}{D}_{1}^{\ast})a_{j}} {P_{4}{P}_{5}^{\ast}-{{P}_{6}^{2}}}, \end{array} $$
(A4)
$$ \begin{array}{@{}rcl@{}} B_{1} &=& i g_{1}({\sigma}_{gg}^{(0)}-{\sigma}_{ee}^{(0)}), \\ B_{2} &=& i g_{2}({\sigma}_{hh}^{(0)}-{\sigma}_{ff}^{(0)}), \\ B_{3} &=& i g_{1}{\sigma}_{eh}^{(0)}, \\ B_{4} &=& i g_{2}{\sigma}_{fg}^{(0)}, \\ B_{5} &=& i g_{1}{\sigma}_{fg}^{(0)}, \\ B_{6} &=& i g_{2}{\sigma}_{eh}^{(0)}, \\ P_{4}&=&\omega_{gh}(P_{1}+i\omega_{gh})(P_{1}+{P}_{2}^{\ast}+i\omega_{gh}) \\ &&-i{{\Omega}_{1}^{2}}(P_{1}+{P}_{2}^{\ast}+i\omega_{gh})+{{\Omega}_{2}^{2}}\omega_{gh}, \\ P_{5}&=&\omega_{gh}(P_{2}-i\omega_{gh})({P}_{1}^{\ast}+P_{2}-i\omega_{gh}) \\ &&+i{{\Omega}_{2}^{2}}({P}_{1}^{\ast}+P_{2}-i\omega_{gh})+{{\Omega}_{1}^{2}}\omega_{gh}, \\ P_{6}&=&i{\Omega}_{1}{\Omega}_{2}(P_{1}+{P}_{2}^{\ast}+2i\omega_{gh}), \\ D_{1} &=& ({P}_{1}^{\ast}+P_{2}-i\omega_{gh})(\omega_{gh} {B}_{2}^{\dagger}+{\Omega}_{2}{B}_{4}^{\dagger}) -i{\Omega}_{1}\omega_{gh} {B}_{6}^{\dagger}, \\ D_{2} &=& ({P}_{1}^{\ast}+P_{2}-i\omega_{gh}){\Omega}_{1}{B}_{4}^{\dagger}-i{\Omega}_{2}\omega_{gh} {B}_{6}^{\dagger}, \\ D_{3} &=& ({P}_{1}^{\ast}+P_{2}-i\omega_{gh}){\Omega}_{2}B_{3}-i{\Omega}_{1}\omega_{gh} B_{5}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} D_{4} &=& ({P}_{1}^{\ast}+P_{2}-i\omega_{gh})(\omega_{gh}B_{1}-{\Omega}_{1}B_{3})+i{\Omega}_{2}\omega_{gh} B_{5}. \\ s_{1} &=&-[\kappa_{1}+i(\widetilde{{\Delta}_{1}}-{\omega}_{gh}^{1})] -\frac{ig_{1}({P}_{6}^{\ast}D_{3}-P_{5}D_{4})}{{P}_{4}^{\ast}P_{5}-({P}_{6}^{\ast})^{2}} \\ &&+\frac{ig_{2}(P_{6}{D}_{2}^{\ast}+P_{4}{D}_{1}^{\ast})}{P_{4}{P}_{5}^{\ast}-{{P}_{6}^{2}}}, \\ s_{2} &=&-[\kappa_{2}+i(\widetilde{{\Delta}_{2}}-{\omega}_{gh}^{2})] -\frac{ig_{1}({P}_{6}^{\prime\ast}{D}_{3}^{\prime}-{P}_{5}^{\prime}{D}_{4}^{\prime})}{{P}_{4}^{\prime\ast}{P}_{5}^{\prime} -({P}_{6}^{\prime\ast})^{2}} \\ &&+\frac{ig_{2}({P}_{6}^{\prime}{D}_{2}^{\prime\ast}+{P}_{4}^{\prime}{D}_{1}^{\prime\ast})}{{P}_{4}^{\prime}{P}_{5}^{\prime\ast} -{P}_{6}^{\prime2}}, \\ u_{1} &=&-\frac{ig_{1}({P}_{6}^{\ast}D_{1}+P_{5}D_{2})}{{P}_{4}^{\ast}P_{5}-({P}_{6}^{\ast})^{2}} -\frac{ig_{2}(P_{6}{D}_{4}^{\ast}-P_{4}{D}_{3}^{\ast})}{P_{4}{P}_{5}^{\ast}-{{P}_{6}^{2}}}, \\ u_{2}&=&-\frac{ig_{1}({P}_{6}^{\prime\ast}{D}_{1}^{\prime}+{P}_{5}^{\prime}{D}_{2}^{\prime})}{{P}_{4}^{\prime\ast}{P}_{5}^{\prime}-({P}_{6}^{\prime\ast})^{2}} -\frac{ig_{2}({P}_{6}^{\prime}{D}_{4}^{\prime\ast}-{P}_{4}^{\prime}{D}_{3}^{\prime\ast})}{{P}_{4}^{\prime}{P}_{5}^{\prime\ast}-{P}_{6}^{\prime2}}. \end{array} $$
(A5)

All the parameters of another cavity have the same form as the first one. Bring σca and σdb back into (3), we can have the steady solution (5).

Appendix B: Coefficients of the Drift Matrix A

Here we give the concrete form of some elements in drift matrix A.

$$ \begin{array}{@{}rcl@{}} {\Delta} &=&\widetilde{{\Delta}_{1}}-{\omega}_{g h}^{1}, {\Delta}^{\prime}=\widetilde{{\Delta}_{2}}-{\omega}_{g h}^{2}, \\ \delta &=&\delta_{1}-{\Delta}_{1}-{\omega}_{g h}^{1}, \delta^{\prime} =\delta_{2}-{\Delta}_{2}-{\omega}_{g h}^{2}, \\ \widetilde{\delta_{1}}&=&\delta_{1}-{\omega}_{g h}^{1}, \widetilde{\delta^{\prime}_{1}}=\delta_{2}-{\omega}_{g h}^{2}, \\ \widetilde{\delta_{2}}&=&{\Delta}_{1}+{\omega}_{g h}^{1}, \widetilde{\delta^{\prime}_{2}}={\Delta}_{2}+{\omega}_{g h}^{2}, \\ \gamma_{12}&=&\gamma_{1}+\gamma_{2}, {\gamma}_{12}^{\prime}={\gamma}_{1}^{\prime}+{\gamma}_{2}^{\prime}, \\ \gamma_{34}&=&\gamma_{3}+\gamma_{4}, {\gamma}_{34}^{\prime}={\gamma}_{3}^{\prime}+{\gamma}_{4}^{\prime}, \\ \gamma&=&\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}, \gamma^{\prime}={\gamma}_{1}^{\prime}+{\gamma}_{2}^{\prime}+{\gamma}_{3}^{\prime}+{\gamma}_{4}^{\prime}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} H_{1}&=&g_{1}\left( {\sigma}_{gg}^{10}-{\sigma}_{ee}^{10}\right),{H}_{1}^{\prime}=g_{1}\left( {\sigma}_{gg}^{20}-{\sigma}_{ee}^{20}\right), \\ H_{2}&=&g_{2}\left( {\sigma}_{hh}^{10}-{\sigma}_{ff}^{10}\right),{H}_{2}^{\prime}=g_{2}\left( {\sigma}_{hh}^{20}-{\sigma}_{ff}^{20}\right), \\ I_{+}&=&\frac{g_{1}}{2}\left( {\sigma}_{fg}^{10}+{\sigma}_{gf}^{10}\right)+\frac{ g_{2}}{2}\left( {\sigma}_{eh}^{10}+{\sigma}_{he}^{10}\right), \\ I_{-}&=-&\frac{i g_{1}}{2}\left( {\sigma}_{fg}^{10}-{\sigma}_{gf}^{10}\right)-\frac{i g_{2}}{2}\left( {\sigma}_{eh}^{10}-{\sigma}_{he}^{10}\right), \\ R_{+}&=&-\frac{g_{1}}{2}\left( {\sigma}_{eh}^{10}+{\sigma}_{he}^{10}\right)-\frac{ g_{2}}{2}\left( {\sigma}_{fg}^{10}+{\sigma}_{gf}^{10}\right), \\ R_{-}&=&\frac{i g_{1}}{2}\left( {\sigma}_{eh}^{10}-{\sigma}_{he}^{10}\right)+\frac{i g_{2}}{2}\left( {\sigma}_{fg}^{10}-{\sigma}_{gf}^{10}\right), \\ T_{+}&=&\frac{g_{2}}{2}\left( {\sigma}_{fg}^{10}+{\sigma}_{gf}^{10}\right)-\frac{ g_{1}}{2}\left( {\sigma}_{eh}^{10}+{\sigma}_{he}^{10}\right),\end{array} $$
$$ \begin{array}{@{}rcl@{}} T_{-}&=&\frac{i g_{2}}{2}\left( {\sigma}_{fg}^{10}-{\sigma}_{gf}^{10}\right)-\frac{i g_{1}}{2}\left( {\sigma}_{eh}^{10}-{\sigma}_{he}^{10}\right), \\ G_{+}&=&\frac{g_{2}}{2}\left( {\sigma}_{eh}^{10}+{\sigma}_{he}^{10}\right)-\frac{ g_{1}}{2}\left( {\sigma}_{fg}^{10}+{\sigma}_{gf}^{10}\right), \\ G_{-}&=&\frac{i g_{2}}{2}\left( {\sigma}_{eh}^{10}-{\sigma}_{he}^{10}\right)-\frac{i g_{1}}{2}\left( {\sigma}_{fg}^{10}-{\sigma}_{gf}^{10}\right). \end{array} $$
(B1)

The other parameters \({I}_{+}^{\prime }, {I}_{-}^{\prime }, {R}_{+}^{\prime }, {R}_{-}^{\prime }, {T}_{+}^{\prime }, {T}_{-}^{\prime }, {G}_{+}^{\prime }, {G}_{-}^{\prime }\) of the second cavity have the same form as the first one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, G., Xiao, R. & Gao, J. Entanglement and Output Squeezing of Distant Optomechanical Systems Generated by Four-Level Atoms. Int J Theor Phys 59, 1338–1350 (2020). https://doi.org/10.1007/s10773-020-04411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04411-6

Keywords

Navigation