Skip to main content
Log in

Virtual-photon-induced entanglement with two nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We propose a potentially practical scheme for efficient generation of entanglement with two nitrogen-vacancy centers (NVC) coupled to a whispering-gallery mode cavity. By virtue of the virtual-photon-excitation, the entanglement with two separate NVC can be produced in a deterministic way. The required operations are very close to the capabilities of current experimental techniques. The effects of decoherence induced by the cavity decay and the atomic spontaneous decay are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu S, He X D, Xu P, et al. Single atoms in the ring lattice for quantum information processing and quantum simulation. Chin Sci Bull, 2012, 57: 1931–1945

    Article  Google Scholar 

  2. Qian Y, Zhang Y Q, Xu J B. Amplifying stationary quantum discord and entanglement between a superconducting qubit and a data bus by time-dependent electromagnetic field. Chin Sci Bull, 2012, 57: 1637–1642

    Article  Google Scholar 

  3. Jiang M, Huang X, Zhou L L, et al. An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin Sci Bull, 2012, 57: 1089–1094

    Article  Google Scholar 

  4. Li M, Fei S M, Li-Jost X Q. Bell inequality, separability and entanglement distillation. Chin Sci Bull, 2011, 56: 945–954

    Article  Google Scholar 

  5. Yu X Y, Li J H, Li X B. Atom-atom entanglement characteristics in fiber-connected cavities system within the double-excitation space. Sci China-Phys Mech Astron, 2012, 55: 1813–1819

    Article  ADS  Google Scholar 

  6. He X, He J Z. Thermal entangled four-level quantum Otto heat engine. Sci China-Phys Mech Astron, 2012, 55: 1751–1756

    Article  ADS  Google Scholar 

  7. Ye M Y, Lin X M, Bai Y K, et al. Entanglement charge of thermal states. Sci China-Phys Mech Astron, 2012, 55: 666–670

    Article  ADS  Google Scholar 

  8. Ma XS, Ren MF, Zhao GX,etal. Effect of decoherence from a spin environment on the entanglement dynamics of two-qutrit states. Sci China-Phys Mech Astron, 2011, 54: 1833–1838

    Article  ADS  Google Scholar 

  9. Zhu X, Saito S, Kemp A, et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature, 2011, 478: 221–224

    Article  ADS  Google Scholar 

  10. Maurer P C, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science, 2012, 336: 1283–1286

    Article  ADS  Google Scholar 

  11. Kennedy T A, Colton J S, Butler J E, et al. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl Phys Lett, 2003, 83: 4190–4192

    Article  ADS  Google Scholar 

  12. Jelezko F, Gaebel T, Popa I, et al. Observation of coherent oscillations in a single electron spin. Phys Rev Lett, 2004, 92: 076401

    Article  ADS  Google Scholar 

  13. Dutt M V G, Childress L, Jiang L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316: 1312–1316

    Article  Google Scholar 

  14. Hanson R, Mendoza F M, Epstein R J, et al. Polarization and readout of coupled single spins in diamond. Phys Rev Lett, 2006, 97: 087601

    Article  ADS  Google Scholar 

  15. Jacques V, Neumann P, Beck J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys Rev Lett, 2009, 102: 057403

    Article  ADS  Google Scholar 

  16. Jiang L, Hodges J S, Maze J R, et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science, 2009, 326: 267–272

    Article  ADS  Google Scholar 

  17. Moehring D L, Maunz P, Olmschenk S, et al. Entanglement of single-atom quantum bits at a distance. Nature, 2007, 449: 68–71

    Article  ADS  Google Scholar 

  18. Yang W L, Yin Z Q, Xu Z Y, et al. One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl Phys Lett, 2010, 96: 241113

    Article  ADS  Google Scholar 

  19. Yang W L, Xu Z Y, Feng M, et al. Entanglement of separate nitrogenvacancy centers coupled to a whispering-gallery mode cavity. New J Phys, 2010, 12: 113039

    Article  Google Scholar 

  20. Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466: 730–734

    Article  ADS  Google Scholar 

  21. Neumman P, Kolesov R, Naydenov B, et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat Phys, 2010, 6: 249–253

    Article  Google Scholar 

  22. Su C H, Greentree A D, Hollenberg L C L. Towards a picosecond transform-limited nitrogen-vacancy based single photon source. Opt Express, 2008, 16: 6240–6250

    Article  ADS  Google Scholar 

  23. Santori C, Tamarat P, Neumann P, et al. Coherent population trapping of single spins in diamond under optical excitation. Phys Rev Lett, 2006, 97: 247401

    Article  ADS  Google Scholar 

  24. Manson N B, Harrison J P, Sellars M J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys Rev B, 2006, 74: 104303

    Article  ADS  Google Scholar 

  25. Yang W L, Yin Z Q, Xu Z Y, et al. Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys Rev A, 2011, 84: 043849

    Article  ADS  Google Scholar 

  26. Chen Q, Yang W L, Feng M, et al. Entangling separate nitrogenvacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys Rev A, 2011, 83: 054305

    Article  ADS  Google Scholar 

  27. Yang W L, An J H, Zhang C J, et al. Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys Rev A, 2013, 87: 022312

    Article  ADS  Google Scholar 

  28. Buck J R, Kimble H J. Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys Rev A, 2003, 67: 033806

    Article  ADS  Google Scholar 

  29. Strekalov D V, Yu N. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys Rev A, 2009, 79: 041805

    Article  ADS  Google Scholar 

  30. Tamarat P, Manson N B, Harrison J P, et al. Spin-flip and spinconserving optical transitions of the nitrogen-vacancy centre in diamond. New J Phys, 2008, 10: 045004

    Article  Google Scholar 

  31. Gardiner C W. Quantum Noise. Berlin: Springer-Verlag, 1991. 381–384

    Book  MATH  Google Scholar 

  32. Pellizzari T. Quantum networking with optical fibres. Phys Rev Lett, 1997, 79: 5242–5245

    Article  ADS  Google Scholar 

  33. Clark S, Peng A, Gu M, et al. Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys Rev Lett, 2003, 91: 177901

    Article  ADS  Google Scholar 

  34. Lü X Y, Si L G, Hao X Y, et al. Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes. Phys Rev A, 2009, 79: 052330

    Article  ADS  Google Scholar 

  35. Zheng S B. Quantum logic gates for two atoms with a single resonant interaction. Phys Rev A, 2005, 71: 062335

    Article  ADS  Google Scholar 

  36. Clark S G, Parkins A S. Entanglement and entropy engineering of atomic two-qubit states. Phys Rev Lett, 2003, 90: 047905

    Article  ADS  Google Scholar 

  37. Yin Z Q, Li F F, Peng P. Implementation of holonomic quantum computation through engineering and manipulating the environment. Phys Rev A, 2007, 76: 062311

    Article  ADS  Google Scholar 

  38. Park Y S, Cook A K, Wang H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett, 2006, 6: 2075–2079

    Article  ADS  Google Scholar 

  39. Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245–2248

    Article  ADS  Google Scholar 

  40. Hill S, Wootters W K. Entanglement of a pair of quantum bits. Phys Rev Lett, 1997, 78: 5022–5025

    Article  ADS  Google Scholar 

  41. Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925–928

    Article  ADS  Google Scholar 

  42. Gorodetsky ML, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators. Opt Lett, 1996, 21: 453–455

    Article  ADS  Google Scholar 

  43. Yang Y D, Huang Y Z, Chen Q. High-Q TMwhispering-gallery modes in three-dimensional microcylinders. Phys Rev A, 2007, 75: 013817

    Article  ADS  Google Scholar 

  44. Srinivasan K, Painter O. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys Rev A, 2007, 75: 023814

    Article  ADS  Google Scholar 

  45. Spillane S M, Kippenberg T J, Vahala K J, et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys Rev A, 2005, 71: 013817

    Article  ADS  Google Scholar 

  46. Xiao Y F, Han Z F, Guo G C. Quantum computation without strict strong coupling on a silicon chip. Phys Rev A, 2006, 73: 052324

    Article  ADS  Google Scholar 

  47. McRae T G, Browen WP. Time-delayed entanglement from coherently coupled nonlinear cavities. Phys Rev A, 2009, 80: 010303

    Article  ADS  Google Scholar 

  48. Min B, Ostby E, Sorger V, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457: 455–458

    Article  ADS  Google Scholar 

  49. Brun T A, Wang H L. Coupling nanocrystals to a high-Q silica microsphere: Entanglement in quantum dots via photon exchange. Phys Rev A, 2000, 61: 032307

    Article  ADS  Google Scholar 

  50. Schietinger S, Schroder T, Benson O. One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. Nano Lett, 2008, 8: 3911–3915

    Article  ADS  Google Scholar 

  51. Neumman P, Mizuochi N, Rempp F, et al. Multipartite entanglement among single spins in diamond. Science, 2008, 320: 1326–1329

    Article  ADS  Google Scholar 

  52. Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nat Phys, 2006, 2: 408–413

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y. Virtual-photon-induced entanglement with two nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Sci. China Phys. Mech. Astron. 56, 2138–2142 (2013). https://doi.org/10.1007/s11433-013-5309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5309-9

Keywords

Navigation