Skip to main content
Log in

Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors

  • Invited Review
  • Condensed Matter Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

For non-destructive optical characterization, laser beam induced current (LBIC) microscopy has been developed into as a quantitative tool to examine individual photodiodes within a large pixel array. Two-dimensional LBIC microscopy, also generally called photocurrent mapping (PC mapping), can provide spatially resolved information about local electrical properties and p-n junction formation in photovoltaic infrared (including visible light) photodetectors from which it is possible to extract material and device parameters such as junction area, junction depth, diffusion length, leakage current position and minority carrier diffusion length etc. This paper presents a comprehensive review of research background, operating principle, fundamental issues, and applications of LBIC or PC mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallmark J T. A new semiconductor photocell using lateral photoeffect. Proc IRE, 1956, 45: 474–483

    Article  Google Scholar 

  2. Bajaj J, Bubulac L O, Newman P R, et al. Spatial mapping of electrically active defects in HgCdTe using laser beam induced current. J Vac Sci Technol A, 1987, 5: 3186–3187

    Article  ADS  Google Scholar 

  3. Musca C A, Redfern D A, Dell J M, et al. Laser beam induced current as a tool for HgCdTe photodiode characterization. Microelectron J, 2000, 31: 537–544

    Article  Google Scholar 

  4. Redfern D A, Smith E, Musca C A, et al. Interpretation of current flow in photodiode structures using laser beam-induced current for characterization and diagnostics. IEEE Trans Electron Dev, 2006, 53: 23–31

    Article  ADS  Google Scholar 

  5. Hu W D, Chen X S, Ye Z H, et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation. Appl Phys Lett, 2012, 101: 181108

    Article  ADS  Google Scholar 

  6. Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J Sel Top Quant, 2013, 19: 4100107

    Article  Google Scholar 

  7. Feng A L, Li G, He G, et al. The role of localized junction leakage in the temperature-dependent laser-beam-induced current spectra for HgCdTe infrared focal plane array photodiodes. J Appl Phys, 2013, 114: 173107

    Article  ADS  Google Scholar 

  8. Redfern D A, Musca C A, Dell J M, et al. Correlation of laser-beam-induced current with current-voltage measurements in HgCdTe photodiodes. J Electron Mater, 2004, 33: 560–571

    Article  ADS  Google Scholar 

  9. Redfern D A, Musca C A, Dell J M, et al. Characterization of electrically active defects in photovoltaic detector arrays using laser beam-induced current. IEEE Trans Electron Dev, 2005, 52: 2163–2174

    Article  ADS  Google Scholar 

  10. Yin F, Hu W D, Zhang B, et al. Simulation of laser beam induced current for HgCdTe photodiodes with leakage current. Opt Quantum Electron, 2009, 41: 805–810

    Article  Google Scholar 

  11. Redfern D A, Thomas J A, Musca C A, et al. Diffusion length measurements in p-HgCdTe using laser beam induced current. J Electron Mater, 2001, 30: 696–703

    Article  ADS  Google Scholar 

  12. Musca C A, Redfern D A, Smith E, et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC). J Electron Mater, 1999, 28: 603–610

    Article  ADS  Google Scholar 

  13. Gluszak E A, Hinckley S, Kamran E. Determination of junction depth and related current phenomena using laser-beam-induced current. Proc SPIE, 2004, 5274: 331–341

    Article  ADS  Google Scholar 

  14. Hu W D, Chen X S, Yin F, et al. Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors. J Appl Phys, 2009, 105: 104502

    Article  ADS  Google Scholar 

  15. Hu W D, Chen X S, Ye Z H, et al. Accurate simulation of temperature dependence of dark current in HgCdTe infrared detector assisted by analytical modeling. J Electron Mater, 2010, 39: 981–985

    Article  ADS  Google Scholar 

  16. Zha F X, Zhou S M, Ma H L, et al. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe. Appl Phys Lett, 2008, 93: 151113

    Article  ADS  Google Scholar 

  17. Zha F X, Li M S, Shao J, et al. Femtosecond laser-drilling-induced HgCdTe photodiodes. Opt Lett, 2010, 35: 971–973

    Article  ADS  Google Scholar 

  18. Zhou S M, Zha F X, Guo Q T, et al. The morphology of micro hole pn junction in p-type HgCdTe formed by femtosecond laser drilling. J Infrared Millim Waves, 2010, 29: 337–341

    Article  Google Scholar 

  19. Martyniuk M, Sewell R H, Westerhout R, et al. Electrical type conversion of p-type HgCdTe induced by nanoimprinting. Appl Phys, 2011, 109: 096102

    Article  Google Scholar 

  20. Gluszak E A, Hinckley S. Contactless junction contrast of HgCdTe n-on-p-type structures obtained by reactive ion etching induced p-to-n conversion. J Electron Mater, 2001, 30: 768–773

    Article  ADS  Google Scholar 

  21. Fang W, Ito K, Redfern D A. Parameter identification for semiconductor diodes by LBIC imaging. SIAM J Appl Math, 2002, 62: 2149–2174

    Article  MATH  MathSciNet  Google Scholar 

  22. Hong X K, Lu H, Zhang D B. Study on the structure characteristics of HgCdTe photodiodes using laser beam-induced current. Opt Quantum Electron, 2013, 45: 623–628

    Article  Google Scholar 

  23. Bajaj J, Tennant W E, Newman P R. Laser beam induced current imaging of surface nonuniformity at the HgCdTe/ZnS interface. J Vac Sci Technol A, Vac Surf Films, 1988, 6: 2757–2759

    Article  ADS  Google Scholar 

  24. Bajaj J, Tennant W E, Zucca R, et al. Spatially resolved characterization of HgCdTe materials and devices by scanning laser microscopy. Semicond Sci Technol, 1993, 8: 872–887

    Article  ADS  Google Scholar 

  25. Redfern D A, Fang W, Ito K, et al. Low temperature saturation of p-n junction laser beam induced current signals. Solid-State Electron, 2004, 48: 409–414

    Article  ADS  Google Scholar 

  26. Qiu W C, Cheng X A, Wang R, et al. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling induced junction on vacancy-doped p-type HgCdTe. J Appl Phys, 2014, 115: 204506

    Article  ADS  Google Scholar 

  27. Busenberg S, Fang W, Ito K. Modeling and analysis of laser beam induced current images in semiconductors. SIAM J Appl Math, 1993, 53: 187–204

    Article  MATH  MathSciNet  Google Scholar 

  28. Qiu W C, Hu W D, Lin T, et al. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope. Appl Phys Lett, 2014, in press

    Google Scholar 

  29. Hu W D, Ye Z H, Liao L, et al. A 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultra-low spectral crosstalk. Opt Lett, 2014, 39: 5130–5133

    Article  Google Scholar 

  30. Feng A L, Li G, He G, et al. Dependence of laser beam induced current on geometrical sizes of the junction for HgCdTe photodiodes. Opt Quantum Electron, 2014, 46: 1277–1282

    Article  Google Scholar 

  31. Baugher B, Churchill H, Yang Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotech, 2014, 9: 262–267

    Article  ADS  Google Scholar 

  32. Balasubramanian K, Burghard M, Kern K, et al. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett, 2005, 5: 507–510

    Article  ADS  Google Scholar 

  33. Zhang Y P, Deng W, Zhang X J, et al. In situ integration of squaraine-nanowire-array-based schottky-type photodetectors with enhanced switching performance. ACS Appl Mater Interfaces, 2013, 5: 12288–12294

    Article  Google Scholar 

  34. Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Commun, 2014, 5: 4651

    Article  ADS  Google Scholar 

  35. Yu Y Q, Jie J S, Jiang P, et al. High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. J Mater Chem, 2011, 21: 12632–12638

    Article  Google Scholar 

  36. Wang J L, Zou X M, Xiao X H, et al. Floating gate memory based monolayer MoS2 transistor with metal nanocrystals embedded in gate dielectrics. Small, 2014, doi: 10.1002/smll.201401872

    Google Scholar 

  37. Hu W D, Chen X S, Yin F, et al. Simulation and design consideration of photoresponse for HgCdTe infrared photodiodes. Opt Quantum Electron, 2008, 40: 1255–1260

    Article  Google Scholar 

  38. Guo N, Hu W D, Chen X S, et al. Optimization for mid-wavelength InSb infrared focal plane arrays under front-side illumination. Opt Quantum Electron, 2013, 45: 673–679

    Article  Google Scholar 

  39. Hu W D, Chen X S, Ye Z H, et al. An improvement on short wavelength photoresponse for a heterostructure HgCdTe two-color infrared detector. Semicond Sci Technol, 2010, 25: 045028

    Article  ADS  Google Scholar 

  40. Wenus J, Rutkowski J, Rogalski A. 2D analysis of double layer heterojunction HgCdTe photodiodes. IEEE Trans Electron Devices, 2001, 48: 1326–1332

    Article  ADS  Google Scholar 

  41. Orsogna D D, Tobin S, Bellotti E. Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection. J Electron Mater, 2008, 37: 1349–1355

    Article  ADS  Google Scholar 

  42. Keasler C A, Moresco M, Orsogna D D, et al. 3D numerical analysis of As-diffused HgCdTe planar pixel arrays. Proc SPIE, 2010, 7780: 77800J

    Article  Google Scholar 

  43. Ji X L, Liu B Q, Xu Y, et al. Deep-level traps induced dark currents in extended wavelength InxGa1-xAs/InP photodetector. J Appl Phys, 2013, 114: 224502

    Article  ADS  Google Scholar 

  44. Yin F, Hu W D, Quan Z J, et al. Determination of electron diffusion length in HgCdTe photodiodes using laser beam induced current. Acta Phys Sin, 2009, 58: 7885–7889

    Google Scholar 

  45. Ong V, Wu D. Determination of diffusion length from within a confined region with the use of EBIC. IEEE Trans Electron Dev, 2001, 48: 332–337

    Article  ADS  Google Scholar 

  46. Bubulac L O, Tennant W E. Role of Hg in junction formation in ion-implanted HgCdTe. Appl Phys Lett, 1987, 51: 355–357

    Article  ADS  Google Scholar 

  47. Bubulac L O. Dependence of junction formation on substrate in implanted HgCdTe. Appl Phys Lett, 1985, 46: 976–978

    Article  ADS  Google Scholar 

  48. Arias J M, Zandian M, Bajaj J, et al. Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes. J Electron Mater, 1995, 24: 521–524

    Article  ADS  Google Scholar 

  49. Buell A A, Pham L T, Newton M D, et al. Physical structure of molecularbeam epitaxy growth defects in HgCdTe and their impact on two-color detector performance. J Electron Mater, 2004, 33: 662–666

    Article  ADS  Google Scholar 

  50. Ahn Y H, Tsen A W, Kim B, et al. Photocurrent Imaging of p-n Junctions in Ambipolar Carbon Nanotube Transistors. Nano Lett, 2007, 7: 3320–3323

    Article  ADS  Google Scholar 

  51. Balasubramanian K, Fan Y W, Burghard M, et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl Phys Lett, 2004, 84: 2400–2402

    Article  ADS  Google Scholar 

  52. Freitag M, Tsang J C, Bol A, et al. Imaging of the schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett, 2007, 7: 2037–2042

    Article  ADS  Google Scholar 

  53. Xia F N, Mueller T, Golizadeh-mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 2009, 9: 1039–1044

    Article  ADS  Google Scholar 

  54. Wu C C, Jariwala D, Sangwan V K, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J Phys Chem Lett, 2013, 4: 2508–2513

    Article  Google Scholar 

  55. Oriol L S, Dominik L, Metin K, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501

    Article  Google Scholar 

  56. Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340: 1311–1314

    Article  ADS  Google Scholar 

  57. Song X F, Hu J L, Zeng H B. Two-dimensional semiconductors: Recent progress and future perspectives. J Mater Chem C, 2013, 1: 2952–2969

    Article  Google Scholar 

  58. Zeng H B, Zhi C Y, Zhang Z H, et al. “White” graphene: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett, 2010, 10: 5049–5055

    Article  ADS  Google Scholar 

  59. Ahn Y, Dunning J, Park J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett, 2005, 5: 1367–1370

    Article  ADS  Google Scholar 

  60. Gu Y, Kwak E, Lensch J, et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl Phys Lett, 2005, 87: 043111

    Article  ADS  Google Scholar 

  61. Miao J S, Hu W D, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8: 3628–3635

    Article  Google Scholar 

  62. Dufaux T, Boettcher J, Burghard M, et al. Photocurrent distribution in graphene-CdS nanowire devices. Small, 2010, 6: 1868–1872

    Article  Google Scholar 

  63. Howell S L, Padalkar S, Yoon K, et al. Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy. Nano Lett, 2013, 13: 5123–5128

    Article  ADS  Google Scholar 

  64. Allen J E, Hemesath E R, Lauhon L J. Scanning photocurrent microscopy analysis of Si nanowire field-effect transistors fabricated by surface etching of the channel. Nano Lett, 2009, 9: 1903–1908

    Article  ADS  Google Scholar 

  65. Luo L B, Chen J J, Wang M Z, et al. Near-Infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction. Adv Funct Mater, 2014, 24: 2794–2800

    Article  Google Scholar 

  66. Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photon, 2010, 4: 611–622

    Article  ADS  Google Scholar 

  67. Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in grapheme. Nat Commun, 2011, 2: 458

    Article  ADS  Google Scholar 

  68. Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by grapheme. Nat Commun, 2011, 2: 579

    Article  ADS  Google Scholar 

  69. Luo L B, Zeng L H, Xie C, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep, 2014, 4: 3914–3918

    ADS  Google Scholar 

  70. Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector. Nano Lett, 2012, 12: 3808–3813

    Article  ADS  Google Scholar 

  71. Miao J S, Hu W D, Guo N, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratio. Small, 2014, in press, doi: 10.1002/smll.201402312

    Google Scholar 

  72. Guo N, Hu W D, Liao L, et al. Anomalous and highly-efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv Mater, 2014, in press, doi: 10.1002/adma.201403664

    Google Scholar 

  73. Lee E J, Balasubramanian K, Weitz R T, et al. Contact and edge effects in grapheme devices. Nat Nanotech, 2008, 3: 486–490

    Article  ADS  Google Scholar 

  74. Yin Z Y, Li H, Jiang L, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80

    Article  Google Scholar 

  75. Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12: 3695–3700

    Article  ADS  Google Scholar 

  76. Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24: 5832–5836

    Article  Google Scholar 

  77. Buscema M, Barkelid M, Zwiller V, et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett, 2013, 13: 358–363

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiDa Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Hu, W. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China Phys. Mech. Astron. 58, 1–13 (2015). https://doi.org/10.1007/s11433-014-5627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5627-6

Keywords

Navigation