Skip to main content
Log in

Insights from molecular simulations on liquid slip over nanostructured surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The current study focuses on non-equilibrium molecular dynamics (NEMD) simulations to investigate the slip properties of water flowing over different nanostructured surfaces. A simulation protocol is developed that applies constant shear stress throughout the fluid before measuring the slip length. Using pseudo-data, the reliability of this protocol in terms of both accuracy and noise of the results for high-slip and multiphase systems is demonstrated. In contrast to the NEMD techniques available in the literature, the protocol also enables a convenient way to compare the slip lengths of different surface coatings. The fluid slip lengths of surface coatings comprising carbon nanotubes on platinum are predicted using the proposed protocol with nitrogen gas trapped in the interstitial gaps. The role of these gas pockets in determining surface slip properties is investigated. The NEMD results from the proposed model compare well with a macroscopic theoretical model for nano-patterned surfaces. Finally, it is concluded that entrapped gas within nanostructures may offer significant drag reduction only if the gas surface coverage is above 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The associated data with this study is available in the supplementary information.

References

  1. Yang F (2010) Slip boundary condition for viscous flow over solid surfaces. Chem Eng Commun 197:544–550

    Article  CAS  Google Scholar 

  2. Xu M, Grabowski A, Yu N, Kerezyte G, Lee J-W, Pfeifer BR, Kim CJ (2020) Superhydrophobic drag reduction for turbulent flows in open water. Phys Rev Appl 13:034056

    Article  CAS  Google Scholar 

  3. Kim D, Pugno NM, Ryu S (2016) Wetting theory for small droplets on textured solid surfaces. Sci Rep 6:37813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Liu J, Li S, Liu J, Han Z, Ren L (2013) Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy. ACS Appl Mater Interfaces 5:8907–8914

    Article  CAS  PubMed  Google Scholar 

  5. Parvate S, Dixit P, Chattopadhyay S (2020) Superhydrophobic surfaces: insights from theory and experiment. J Phys Chem B 124:1323–1360

    Article  CAS  PubMed  Google Scholar 

  6. Zhang C, Chen Y (2014) Slip behavior of liquid flow in rough nanochannels. Chem Eng Process Process Intensif 85:203–208

    Article  CAS  Google Scholar 

  7. Priezjev NV (2011) Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. J Chem Phys 135:204704

    Article  PubMed  Google Scholar 

  8. Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  CAS  Google Scholar 

  9. Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39:1073–1095

    Article  CAS  PubMed  Google Scholar 

  10. Lee C, Choi CH, Kim CJ (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101:64501

    Article  Google Scholar 

  11. Lee C, Kim CJ (2009) Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25:12812–12818

    Article  CAS  PubMed  Google Scholar 

  12. Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  CAS  Google Scholar 

  13. Tyrrell JWG, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104

    Article  CAS  PubMed  Google Scholar 

  14. Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen AC, Findenegg GH (2003) Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19:2409–2418

    Article  CAS  Google Scholar 

  15. Switkes M, Ruberti JW (2004) Rapid cryofixation/freeze fracture for the study of nanobubbles at solid–liquid interfaces. Appl Phys Lett 84:4759–4761

    Article  CAS  Google Scholar 

  16. Karpitschka S, Dietrich E, Seddon JRT, Zandvliet HJW, Lohse D, Riegler H (2012) Nonintrusive optical visualization of surface nanobubbles. Phys Rev Lett 109:66102

    Article  Google Scholar 

  17. Philip JR (1972) Flows satisfying mixed no-slip and no-shear conditions, Zeitschrift Für Angew. Math Und Phys ZAMP 23:353–372

    Google Scholar 

  18. Lauga E, Stone HA (2003) Effective slip in pressure-driven Stokes flow. J Fluid Mech 489:55–77

    Article  Google Scholar 

  19. Ybert C, Barentin C, Cottin-Bizonne C, Joseph P, Bocquet L (2007) Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys Fluids 19:123601

    Article  Google Scholar 

  20. Choi CH, Kim CJ (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96:66001

    Article  Google Scholar 

  21. Joseph P, Cottin-Bizonne C, Benoit J-M, Ybert C, Journet C, Tabeling P, Bocquet L (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97:156104

    Article  CAS  PubMed  Google Scholar 

  22. Choi C-H, Ulmanella U, Kim J, Ho C-M, Kim C-J (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105

    Article  Google Scholar 

  23. Vinogradova OI (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11:2213–2220

    Article  CAS  Google Scholar 

  24. Busse A, Sandham ND, McHale G, Newton MI (2013) Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J Fluid Mech 727:488–508

    Article  Google Scholar 

  25. Schönecker C, Baier T, Hardt S (2014) Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J Fluid Mech 740:168–195

    Article  Google Scholar 

  26. Cottin-Bizonne C, Barentin C, Charlaix É, Bocquet L, Barrat J-L (2004) Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur Phys J E 15:427–438

    Article  CAS  PubMed  Google Scholar 

  27. Hendy SC, Lund NJ (2007) Effective slip boundary conditions for flows over nanoscale chemical heterogeneities. Phys Rev E 76:66313

    Article  CAS  Google Scholar 

  28. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P. J Chem Phys 123:234505

    Article  CAS  PubMed  Google Scholar 

  29. Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Article  CAS  Google Scholar 

  30. Agrawal PM, Rice BM, Thompson DL (2002) Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf Sci 515:21–35

    Article  CAS  Google Scholar 

  31. Boutard Y, Ungerer P, Teuler JM, Ahunbay MG, Sabater SF, Pérez-Pellitero J, Mackie AD, Bourasseau E (2005) Extension of the anisotropic united atoms intermolecular potential to amines, amides and alkanols: application to the problems of the 2004 Fluid Simulation Challenge. Fluid Phase Equilib 236:25–41

    Article  CAS  Google Scholar 

  32. Lorentz HA (1881) Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann Phys 248:127–136

    Article  Google Scholar 

  33. Ritos K, Dongari N, Borg MK, Zhang Y, Reese JM (2013) Dynamics of nanoscale droplets on moving surfaces. Langmuir 29:6936–6943

    Article  CAS  PubMed  Google Scholar 

  34. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L (2010) Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett 10:4067–4073

    Article  CAS  PubMed  Google Scholar 

  35. Kannam SK, Todd BD, Hansen JS, Daivis PJ (2011) Slip flow in graphene nanochannels. J Chem Phys 135:144701

    Article  PubMed  Google Scholar 

  36. Bocquet L, Barrat J-L (1994) Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys Rev E 49:3079–3092

    Article  CAS  Google Scholar 

  37. Petravic J, Harrowell P (2007) On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J Chem Phys 127:174706

    Article  PubMed  Google Scholar 

  38. Cottin-Bizonne C, Barrat J-L, Bocquet L, Charlaix É (2003) Low-friction flows of liquid at nanopatterned interfaces. Nat Mater 2:237–240

    Article  CAS  PubMed  Google Scholar 

  39. Priezjev NV, Darhuber AA, Troian SM (2005) Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys Rev E 71:41608

    Article  Google Scholar 

  40. Yong X, Zhang LT (2013) Toward generating low-friction nanoengineered surfaces with liquid-vapor interfaces. Langmuir 29:12623–12627

    Article  CAS  PubMed  Google Scholar 

  41. Holland DM, Lockerby DA, Borg MK, Nicholls WD, Reese JM (2015) Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid Nanofluidics 18:461–474

    Article  CAS  Google Scholar 

  42. Longshaw SM, Borg MK, Ramisetti SB, Zhang J, Lockerby DA, Emerson DR, Reese JM (2018) mdFoam+: advanced molecular dynamics in OpenFOAM. Comput Phys Commun 224:1–21

    Article  CAS  Google Scholar 

  43. Borg MK, Macpherson GB, Reese JM (2010) Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries. Mol Simul 36:745–757

    Article  CAS  Google Scholar 

  44. Nicholls WD, Borg MK, Lockerby DA, Reese JM (2012) Water transport through (7, 7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluidics 12:257–264

    Article  CAS  Google Scholar 

  45. Borg MK, Lockerby DA, Reese JM (2015) A hybrid molecular–continuum method for unsteady compressible multiscale flows. J Fluid Mech 768:388–414

    Article  CAS  Google Scholar 

  46. Bewig KW, Zisman WA (1965) The wetting of gold and platinum by water. J Phys Chem 69:4238–4242

    Article  CAS  Google Scholar 

  47. Zhang J, Borg MK, Ritos K, Reese JM (2016) Electrowetting controls the deposit patterns of evaporated salt water nanodroplets. Langmuir 32:1542–1549

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Borg MK, Sefiane K, Reese JM (2015) Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation. Phys Rev E 92:52403

    Article  Google Scholar 

  49. Ramisetti SB, Borg MK, Lockerby DA, Reese JM (2017) Liquid slip over gas nanofilms. Phys Rev Fluids 2:084003

    Article  Google Scholar 

  50. Battino R, Rettich TR, Tominaga T (1984) The solubility of nitrogen and air in liquids. J Phys Chem Ref Data 13:563–600

    Article  CAS  Google Scholar 

  51. Borg MK, Lockerby DA, Reese JM (2014) The FADE mass-stat: a technique for inserting or deleting particles in molecular dynamics simulations. J Chem Phys 140:74110

    Article  Google Scholar 

  52. Kannam SK, Todd BD, Hansen JS, Daivis PJ (2012) Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136:24705

    Article  Google Scholar 

  53. Xiong W, Liu JZ, Ma M, Xu Z, Sheridan J, Zheng Q (2011) Strain engineering water transport in graphene nanochannels. Phys Rev E 84:56329

    Article  Google Scholar 

  54. Kannam SK, Todd BD, Hansen JS, Daivis PJ (2013) How fast does water flow in carbon nanotubes? J Chem Phys 138:94701

    Article  Google Scholar 

  55. Pandey PR, Roy S (2013) Is it possible to change wettability of hydrophilic surface by changing its roughness? J Phys Chem Lett 4:3692–3697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Matthew Borg, University of Edinburgh, and Duncan Lockerby, University of Warwick, for providing the support in this study. This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

Author information

Authors and Affiliations

Authors

Contributions

S.R., A.Y., conceptualization, methodology, data curation, writing—original draft, visualization, investigation, writing—review and editing.

Corresponding authors

Correspondence to Srinivasa B. Ramisetti or Anshul Yadav.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

We here give our consent to publish the paper in this journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramisetti, S.B., Yadav, A. Insights from molecular simulations on liquid slip over nanostructured surfaces. J Mol Model 28, 346 (2022). https://doi.org/10.1007/s00894-022-05338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05338-x

Keywords

Navigation