Skip to main content
Log in

Computable upper bounds for the adiabatic approximation errors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

For a given Hermitian Hamiltonian H(s) (s ∈ [0, 1]) with eigenvalues E k (s) and the corresponding eigenstates |E k (s)〉 (1 ⩽ kN), adiabatic evolution described by the dilated Hamiltonian H t (t):= H(t/T) (t ∈ [0, T]) starting from any fixed eigenstate |E n (0)〉 is discussed in this paper. Under the gap-condition that |E k (s) − E n (s)| ⩾ λ > 0 for all s ∈ [0, 1] and all kn, computable upper bounds for the adiabatic approximation errors between the exact solution |ψ T (t)〉 and the adiabatic approximation solution |ψ adi T (t)〉 to the schrödinger equation \(i\left| {\dot \psi _T \left. {(t)} \right\rangle = H_T (t)} \right|\left. {\psi _T (t)} \right\rangle\) with the initial condition |ψ T (0)〉 = |E n (0)〉 are given in terms of fidelity and distance, respectively. as an application, it is proved that when the total evolving time t goes to infinity, ‖|ψ T (t)〉 − |ψ adi T (t)〉‖ converges uniformly to zero, which implies that |ψ T (t)〉 ≈ |ψ adi T (t)〉 for all t ∈ [0, T] provided that T is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born M, Fock V. Beweis des adiabatensatzes. Z Phys, 1928, 51: 165

    Article  MATH  ADS  Google Scholar 

  2. Schiff L I. Quantum Mechanics. New York: McGraw-Hill Book Co. Inc., 1949

    Google Scholar 

  3. Messiah A. Quantum Mechanics. Amsterdam: North-Holland Pub. Co., 1962

    MATH  Google Scholar 

  4. Kato T. On the adiabatic theorem of quantum mechanics. J Phys Soc Jpn, 1950, 5: 435

    Article  ADS  Google Scholar 

  5. Bohm D. Quantum Theory. New York: Prentic-Hall Inc., 1951

    Google Scholar 

  6. Landau L D. Theory of energy transfer II. Zeitschrift, 1932, 2: 46–51

    Google Scholar 

  7. Zener C. Non-adiabatic crossing of energy levels. Proc R Soc A, 1932, 137: 696–702

    Article  ADS  Google Scholar 

  8. Gell-Mann M, Low F. Bound states in quantum field theory. Phys Rev, 1951, 84: 350–354

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Berry M V. Quantum phase factors accompanying adiabatic changes. Proc R Soc A, 1984, 392: 45–57

    Article  MATH  ADS  Google Scholar 

  10. Avron J E, Seiler R, Yaffe L G. Adiabatic theorems and applications to the quantum Hall effect. Commun Math Phys, 1987, 110: 33–49

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Farhi E, Goldstone J, Gutmann S, et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001, 292: 472–475

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Farhi E, Goldstone J. Quantum adiabatic evolution algorithms with different paths. arXiv: quant-ph/0208135v1, 2002

    Google Scholar 

  13. Sarandy M S, Lidar D A. Adiabatic quantum computation in open systems. Phys Rev Lett, 2005, 95: 250503

    Article  ADS  Google Scholar 

  14. Thunstrom P, Aberg J, Sjoqvist E. Adiabatic approximation for weakly open systems. Phys Rev A, 2005, 72: 022328

    Article  ADS  Google Scholar 

  15. Marzlin K P, Sanders B C. Inconsistency in the application of the adiabatic theorem. Phys Rev Lett, 2004, 93: 160408

    Article  ADS  Google Scholar 

  16. Tong D M, Singh K, Kwek L C, et al. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys Rev Lett, 2005, 95: 110407

    Article  ADS  Google Scholar 

  17. Tong D M, Singh K, Kwek L C, et al. Sufficiency criterion for the validity of the adiabatic approximation. Phys Rev Lett, 2007, 98: 150402

    Article  ADS  Google Scholar 

  18. Tong D M. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys Rev Lett, 2010, 104: 120401

    Article  ADS  Google Scholar 

  19. Duki S, Mathur H, Narayan O. Comment I on “Inconsistency in the application of the adiabatic theorem”. Phys Rev Lett, 2006, 97, 128901

    Article  ADS  Google Scholar 

  20. Ma J, Zhang Y P, Wang E G, et al. Comment II on “Inconsistency in the application of the adiabatic theorem”. Phys Rev Lett, 2006, 97: 128902

    Article  ADS  Google Scholar 

  21. Wu Z Y, Yang H. Validity of the quantum adiabatic theorem. Phys Rev A, 2005, 72: 012114

    Article  MathSciNet  ADS  Google Scholar 

  22. Ambainis A, Regev O. An elementary proof of the quantum adiabatic theorem. arXiv: quant-ph /0411152v2, 2006

    Google Scholar 

  23. Avron J E, Fraas M, Graf G M, et al. Adiabatic theorems for generators of contracting evolutions. CommunMath Phys, 2012, 314(1): 163–191

    MathSciNet  MATH  ADS  Google Scholar 

  24. Cao H X, Guo Z H, Chen Z L, et al. Quantitative sufficient conditions for adiabatic approximation. Sci China-Phys Mech Astron, 2013, 56(7): 1401–1407

    Article  ADS  Google Scholar 

  25. Wang W H, Guo Z H, Cao H X. An upper bound for the adiabatic approximation error. Sci China-Phys Mech Astron, 2014, 57(2): 218–224

    Article  Google Scholar 

  26. Chen B, Shen Q H, Fan W, et al. Long-range adiabatic quantum state transfer through a linear array of quantum dots. Sci China-Phys Mech Astron, 2012, 55(9): 1635–1640

    Article  ADS  Google Scholar 

  27. Sun J, Lu S F, Liu F. Speedup in adiabatic evolution based quantum algorithms. Sci China-Phys Mech Astron, 2012, 55(9): 1630–1634

    Article  ADS  Google Scholar 

  28. Schaller G, Mostame S, Schützhold R. General error estimate for adiabatic quantum computing. Phys Rev A, 2006, 73: 062307

    Article  ADS  Google Scholar 

  29. Jansen S, Ruskai M B, Seiler R. Bounds for the adiabatic approximation with applications to quantum computation. J Math Phys, 2007, 48: 102111

    Article  MathSciNet  ADS  Google Scholar 

  30. Guo Z H, Cao H X, Lu L. Adiabatic approximation in PT-symmetric quantum mechanics. Sci China-Phys Mech Astron, 2014, 57(10): 1835–1839

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiXin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Cao, H., Guo, Z. et al. Computable upper bounds for the adiabatic approximation errors. Sci. China Phys. Mech. Astron. 57, 2031–2038 (2014). https://doi.org/10.1007/s11433-014-5504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5504-3

Keywords

Navigation