Skip to main content
Log in

Quantitative sufficient conditions for adiabatic approximation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Two linear In this letter, we prove the following conclusions by introducing a function F n (t): (1) If a quantum system S with a time-dependent non-degenerate Hamiltonian H(t) is initially in the n-th eigenstate of H(0), then the state of the system at time t will remain in the n-th eigenstate of H(t) up to a multiplicative phase factor if and only if the values F n (t) for all t are always on the circle centered at 1 with radius 1; (2) If a quantum system S with a time-dependent Hamiltonian H(t) is initially in the n-th eigenstate of H(0), then the state of the system at time t will remain ɛ-uniformly approximately in the n-th eigenstate of H(t) up to a multiplicative phase factor if and only if the values F n (t) for all t are always outside of the circle centered at 1 with radius 1−ɛ. Moreover, some quantitative sufficient conditions for the state of the system at time t to remain ɛ-uniformly approximately in the n-th eigenstate of H(t) up to a multiplicative phase factor are established. Lastly, our results are illustrated by a spin-half particle in a rotating magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born M, Fock V. Beweis des adiabatensatzes. Z Phys, 1928, 51: 165–180

    Article  ADS  MATH  Google Scholar 

  2. Schwinger J. On nonadiabatic processes in inhomogeneous Fields. Phys Rev, 1937, 51: 648–651

    Article  ADS  Google Scholar 

  3. Schiff L I. Quantum Mechanics. New York: McGraw-Hill Book Co. Inc., 1949

    Google Scholar 

  4. Kato T. On the adiabatic theorem of quantum mechanics. J Phys Soc Jpn, 1950, 5: 435–439

    Article  ADS  Google Scholar 

  5. Messiah A. Quantum Mechanics. Amsterdam: North-Holland, Pub. Co., 1962

    MATH  Google Scholar 

  6. Bohm D. Quantum Theory. New York: Prentic-Hall Inc., 1951

    Google Scholar 

  7. Landau L D. Theory of energy transfer II. Zeitschrift, 1932, 2: 46–51

    Google Scholar 

  8. Zener C. Non-adiabatic crossing of energy levels. Proc R Soc A, 1932, 137: 696–702

    Article  ADS  Google Scholar 

  9. Gell-Mann M, Low F. Bound states in quantum field theory. Phys Rev, 1951, 84: 350–354

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Berry M V. Quantum phase factors accompanying adiabatic changes. Proc R Soc A, 1984, 392: 45–57

    Article  ADS  MATH  Google Scholar 

  11. Avron J E, Seiler R, Yaffe L G. Adiabatic theorems and applications to the quantum Hall effect. Commun Math Phys, 1987, 110: 33–49

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Farhi E, Goldstone J, Gutmann S, et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 2001, 292: 472–475

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Sarandy M S, Lidar D A. Adiabatic quantum computation in open systems. Phys Rev Lett, 2005, 95: 250503

    Article  ADS  Google Scholar 

  14. Thunstrom P, Aberg J, Sjoqvist E. Adiabatic approximation for weakly open systems. Phys Rev A, 2005, 72: 022328

    Article  ADS  Google Scholar 

  15. Tong D M, Singh K, Kwek L C, et al. Sufficiency criterion for the validity of the adiabatic approximation. Phys Rev Lett, 2007, 98: 150402

    Article  ADS  Google Scholar 

  16. Tong D M. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys Rev Lett, 2010, 104: 120401

    Article  ADS  Google Scholar 

  17. Tong D M, Singh K, Kwek L C, et al. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys Rev Lett, 2005, 95: 110407

    Article  ADS  Google Scholar 

  18. Ambainis A, Regev O. An elementary proof of the quantum adiabatic theorem. arXiv:quant-ph/0411152v2

  19. Avron J E, Fraas M, Graf G M, et al. Adiabatic theorems for generators of contracting evolutions. arXiv:1106.4661v2

  20. Chen B, Shen Q H, Fan W, et al. Long-range adiabatic quantum state transfer through a linear array of quantum dots. Sci China-Phys Mech Astron, 2012, 55(9): 1635–1640

    Article  ADS  Google Scholar 

  21. Sun J, Lu S F, Liu F. Speedup in adiabatic evolution based quantum algorithms. Sci China-Phys Mech Astron, 2012, 55(9): 1630–1634

    Article  ADS  Google Scholar 

  22. Xu G F, Kwek L C, Tong D M. Effects of noisy quantum channels on one-qubit rotation gate. Sci China-Phys Mech Astron, 2012, 55(5): 808–814

    Article  ADS  Google Scholar 

  23. Cong S, Liu J X. Trajectory tracking control of quantum systems. Chin Sci Bull, 2012, 57(18): 2252–2258

    Article  Google Scholar 

  24. Liu W F, Zhang C B, Chen Z H. Multi-step evolution and measurement control of finite-dimensional quantum systems. Chin Sci Bull, 2012, 57(18): 2233–2241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiXin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Guo, Z., Chen, Z. et al. Quantitative sufficient conditions for adiabatic approximation. Sci. China Phys. Mech. Astron. 56, 1401–1407 (2013). https://doi.org/10.1007/s11433-013-5127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5127-0

Keywords

Navigation