Skip to main content
Log in

Adiabatic theorems and applications to the quantum hall effect

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study an adiabatic evolution that approximates the physical dynamics and describes a natural parallel transport in spectral subspaces. Using this we prove two folk theorems about the adiabatic limit of quantum mechanics: 1. For slow time variation of the Hamiltonian, the time evolution reduces to spectral subspaces bordered by gaps. 2. The eventual tunneling out of such spectral subspaces is smaller than any inverse power of the time scale if the Hamiltonian varies infinitly smoothly over a finite interval. Except for the existence of gaps, no assumptions are made on the nature of the spectrum. We apply these results to charge transport in quantum Hall Hamiltonians and prove that the flux averaged charge transport is an integer in the adiabatic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Seiler, R.: Quantisation of the Hall conductance for general multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett.54, 259–262 (1985)

    Article  Google Scholar 

  2. Avron, Y., Seiler, R., Shapiro, B.: Generic properties of quantum Hall Hamiltonians for finite systems. Nucl. Phys. B265 [FS 15], 364–374 (1986)

    Article  Google Scholar 

  3. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A392, 45–57 (1984)

    Google Scholar 

  4. Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys.51, 165–169 (1928)

    Google Scholar 

  5. Friedrichs, K.: The mathematical theory of quantum theory of fields. New York: Interscience 1953

    Google Scholar 

  6. Garrido, L.M.: Generalized adiabatic invariance. J. Math. Phys.5, 355–362 (1964)

    Article  Google Scholar 

  7. Kato, T.: Perturbation theory of linear operators. Berlin, Heidelberg, New York. Springer 1966

    Google Scholar 

  8. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. J. Jpn.5, 435–439 (1950)

    Google Scholar 

  9. von-Klitzing, K., Dorda, G., Pepper, M.: New method for high accuracy determination of the fine structure constant based on the quantized Hall effect. Phys. Rev. Lett.45, 494–497 (1980).

    Article  Google Scholar 

  10. Krein, S.G.: Linear differential equations in Banach space. Transl. Math. Monog.27 (1972)

  11. Landau, L., Lifshitz, I.M.: Quantum mechanics. Sec. (revised) ed. London: Pergamon 1965

    Google Scholar 

  12. Laughlin, R.B.: Quantized hall conductivity in two dimensions. Phys. Rev. B23 (1981) 5632–5633 (1981)

    Google Scholar 

  13. Lenard, A.: Adiabatic invariants to all orders. Ann. Phys.6, 261–276 (1959)

    Article  Google Scholar 

  14. Milnor, J., Stasheff, J.D.: Characteristic classes. Princeton, NJ: Princeton University Press 1974

    Google Scholar 

  15. Nenciu, G.: Adiabatic theorem and spectral concentration. Commun. Math. Phys.82, 121–135 (1981)

    Article  Google Scholar 

  16. Niu, Q., Thouless, D.J.: Quantised adiabatic charge transport in the presence of substrate disorder and many body interactions. J. Phys. A17, 30–49 (1984)

    Google Scholar 

  17. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. Fourier analysis, self-adjointness. New York: Academic Press 1975

    Google Scholar 

  18. Sancho, S.J.:m-th order adiabatic invariance for quantum systems. Proc. Phys. Soc. Lond.89, 1–5 (1966)

    Google Scholar 

  19. Schering, G.: On the adiabatic theorem (in preparation)

  20. Shapiro, B.: Finite size corrections in quantum Hall effect. Technion preprint

  21. Simon, B.: Holonomy, the quantum adiabatic theorem and Berry's phase Phys. Rev. Lett.51, 2167–2170 (1983)

    Google Scholar 

  22. Simon, B.: Hamiltonians defined as quadratic forms. Princeton, NJ: Princeton University Press 1971

    Google Scholar 

  23. Tao, R., Haldane, F.D.M.: Impurity effect, degeneracy and topological invariant in the quantum Hall effect. Phys. Rev. B33, 3844–3855 (1986)

    Google Scholar 

  24. Thouless, D.J., Niu, Q.: Nonlinear corrections to the quantization of Hall conductance. Phys. Rev. B30, 3561–3562 (1984)

    Google Scholar 

  25. Wilczek, F., Zee, A.: Appearance of Gauge structure in simple dynamical systems. Phys. Rev. Lett.52, 2111–2114 (1984)

    Google Scholar 

  26. Yoshida, K.: Functional analysis. Grundlagen der Math. Wissenschaften, Bd.123. Berlin, Heidelberg, New York: Springer

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avron, J.E., Seiler, R. & Yaffe, L.G. Adiabatic theorems and applications to the quantum hall effect. Commun.Math. Phys. 110, 33–49 (1987). https://doi.org/10.1007/BF01209015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209015

Keywords

Navigation