Skip to main content
Log in

Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present a protocol for quantum private comparison of equality (QPCE) with the help of a semi-honest third party (TP). Instead of employing the entanglement, we use single photons to achieve the comparison in this protocol. By utilizing collective eavesdropping detection strategy, our protocol has the advantage of higher qubit efficiency and lower cost of implementation. In addition to this protocol, we further introduce three robust versions which can be immune to collective dephasing noise, collective-rotation noise and all types of unitary collective noise, respectively. Finally, we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Wen K, Long G L. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys Rev A, 2005, 72: 022336

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  5. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  MATH  Google Scholar 

  6. Tan Y G, Cai Q Y. Practical decoy state quantum key distribution with finite resource. Eur Phys J D, 2010, 56: 449–455

    Article  ADS  Google Scholar 

  7. Lu Z X, Yu L, Li K, et al. Reverse reconciliation for continuous variable quantum key distribution. Sci China-Phys Mech Astron, 2010, 53: 101–105

    ADS  Google Scholar 

  8. Gao F, Wen Q Y, Qin S J, et al. Quantum asymmetric cryptography with symmetric keys. Sci China Ser G-Phys Mech Astron, 2009, 52: 1925–1931

    Article  ADS  Google Scholar 

  9. Huang W, Guo F Z, Huang Z, et al. Three-particle QKD protocol against a collective noise. Opt Commun, 2011, 284: 536–540

    Article  ADS  Google Scholar 

  10. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  11. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  12. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  13. Lin S, Wen Q Y, Qin S J, et al. Multiparty quantum secret sharing with collective eavesdropping-check. Opt Commun, 2009, 282: 4455–4459

    Article  ADS  Google Scholar 

  14. Yang Y G, Chai H P, Wang Y, et al. Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci China-Phys Mech Astron, 2011, 54: 1619–1624

    Article  ADS  Google Scholar 

  15. Wang T Y, Wen Q Y. Security of a kind of quantum secret sharing with single photons. Quant Inf Comput, 2011, 11: 0434–0443

    MathSciNet  Google Scholar 

  16. Tsai C W, Hwang T. Multi-party quantum secret sharing based on two special entangled states. Sci China-Phys Mech Astron, 2012, 55: 460–464

    Article  ADS  Google Scholar 

  17. Li Q, Long D Y, Chan W H, et al. Sharing a quantum secret without a trusted party. Quantum Inf Process, 2011, 10: 97–106

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi R H, Huang L S, Yang W, et al. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf Process, 2011, 10: 53–61

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia H Y, Wen Q Y, Song T T, et al. Quantum protocol for millionaire problem. Opt Commun, 2011, 284: 545–549

    Article  ADS  Google Scholar 

  20. Long G L, Liu X. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  21. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  22. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942–947

    Article  ADS  Google Scholar 

  23. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deteministic secure quantum communication. Front Phys China, 2007, 2: 251–272

    Article  ADS  Google Scholar 

  24. Huang W, Wen Q Y, Liu B, et al. Deterministic secure quantum communication with collective detection using single photons. Int J Theor Phys, 2012, 51: 2787–2797

    Article  MATH  Google Scholar 

  25. Yao A. Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82). Washington: IEEE, 1982

    Google Scholar 

  26. Boudot F, Schoenmakers B, Traore J. A fair and efficient solution to the socialist millionaires problem. Discr Appl Math, 2001, 111: 23–36

    Article  MathSciNet  MATH  Google Scholar 

  27. Qin J, Zhang Z F, Feng D G, et al. A protocol of comparing information without leaking. J Softw, 2004, 15: 421–427

    MATH  Google Scholar 

  28. Lo H K. Insecurity of quantum secure computations. Phys Rev A, 1997, 56: 1154–1162

    Article  ADS  Google Scholar 

  29. Buhrman H, Christandl M, Schaffner C. Complete insecurity of quantum protocols for classical two-party computation. Phys Rev Lett, 2012, 109: 160501

    Article  ADS  Google Scholar 

  30. Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2009, 42: 055305

    Article  MathSciNet  ADS  Google Scholar 

  31. Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2010, 43: 209801

    Article  MathSciNet  ADS  Google Scholar 

  32. Liu W, Wang Y B, Jiang Z T, et al. A protocol for the quantum private comparison of equality with ×-type state. Int J Theor Phys, 2012, 51: 69–77

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Process, 2012, 12: 887–897

    Article  MathSciNet  ADS  Google Scholar 

  34. Liu W, Wang Y B, Jiang Z T, et al. New quantum private comparison protocol using ×-type state. Int J Theor Phys, 2012, 51: 1953–1960

    Article  MathSciNet  MATH  Google Scholar 

  35. Tseng H Y, Lin J, Hwang T, New quantum private comparison protocol using EPR pairs. Quantum Inf Process, 2012, 11: 373–384

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen X B, Xu G, Niu X X, et al. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun, 2009, 283: 1161–1165

    Google Scholar 

  37. Lin J, Tseng H Y, Hwang T. Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt Commun, 2011, 284: 2212–2214

    Google Scholar 

  38. Liu W, Wang Y B. Quantum private comparison based on GHZ entangled. Int J Theor Phys, 2012, 51: 3596–3604

    Article  MATH  Google Scholar 

  39. Yang, Y G, Xia J, Jia X, et al. Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf Process, 2013, 12: 877–885

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Liu B, Gao F, Wen Q Y. Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J Quant Electron, 2011, 47: 1383–1390

    Article  ADS  Google Scholar 

  41. Zanardi P, Rasetti M. Noiseless quantum codes. Phys Rev Lett, 1997, 79: 3306

    Article  ADS  Google Scholar 

  42. Huang W, Wen Q Y, Liu B, et al. A general method for constructing unitary operations for protocols with collective detection and new QKD protocols against collective noise. arXiv:1210.1332v2

  43. Duan L M, Guo G C. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys Rev A, 1998, 57: 737–741

    Article  ADS  Google Scholar 

  44. Boileau J C, Gottesman D, Laflamme R, et al. Robust polarizationbased quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901

    Article  ADS  Google Scholar 

  45. Huang W, Wen Q Y, Jia H Y, et al. Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin Phys B, 2012, 21: 100308

    Article  ADS  Google Scholar 

  46. Li X H, Deng F G, Hong Y Z. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  47. Cabello A. Six-qubit permutation-based decoherence-free orthogonal basis. Phys Rev A, 2007, 75: 020301

    Article  MathSciNet  ADS  Google Scholar 

  48. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  49. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  MATH  Google Scholar 

  50. Gao F, Qin S J, Guo F Z, et al. Dense-coding attack on three-party quantum key distribution protocols. IEEE J Quant Electron, 2011, 47: 630–635

    Article  ADS  Google Scholar 

  51. D’Ariano G M, Presti P L, Paris M G A. Using entanglement improves the precision of quantum measurements. Phys Rev Lett, 2001, 87: 270404

    Article  Google Scholar 

  52. Wang G M, Ying M S. Unambiguous discrimination among quantum operations. Phys Rew A, 2006, 73: 042301

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wen, Q., Liu, B. et al. Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56, 1670–1678 (2013). https://doi.org/10.1007/s11433-013-5224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5224-0

Keywords

Navigation