Skip to main content
Log in

Multi-party quantum secret sharing based on two special entangled states

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A multi-party quantum secret sharing protocol using two entangled states, \(\left| {\Phi _0 \rangle = \tfrac{1} {{\sqrt 2 }}\left( {| + \rangle ^{ \otimes n} + | - \rangle ^{ \otimes n} } \right)} \right. \) and \(\left| {\Phi _1 \rangle = \tfrac{1} {{\sqrt 2 }}\left( {| + \rangle ^{ \otimes n} + | - \rangle ^{ \otimes n} } \right)} \right. \), is proposed and analyzed. In this protocol, without requiring to generate any photon or do any local unitary operation, an agent can obtain a shadow of the secret key by simply performing a measurement of single photon. Furthermore, the security of the protocol is analyzed. It shows that no agent can obtain the manager’s secret without the help of the other agents, and any eavesdropper will be detected if he/she tries to steal the manager’s secret under ideal or noisy quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceeding of the IEEE International Conference on Computers, Systems, and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  3. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  4. Bagherinezhad S, Karimipour V. Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys Rev A, 2003, 67: 044302

    Article  ADS  Google Scholar 

  5. Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secretsharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  7. Song J, Zhang S. Secure quantum secret sharing based on reusable GHZ states as secure carriers. Chin Phys Lett, 2006, 23: 1383–1386

    Article  ADS  Google Scholar 

  8. Sun Y, Wen Q Y, Gao F, et al. Multiparty quantum secret sharing based on Bell measurement. Opt Commun, 2009, 282: 3647–3651.

    Article  ADS  Google Scholar 

  9. Shi R H, Huang L S, Yang W, et al. Multiparty quantum secret sharing with Bell states and Bell measurements. Opt Commun, 2010, 283(11): 2476–2480

    Article  ADS  Google Scholar 

  10. Deng F G, Long G L, Zhoua H Y. An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2005, 340: 43–50

    Article  ADS  MATH  Google Scholar 

  11. Deng F G, Zhou P, Li X H, et al. Efficient multiparty quantum secret sharing with Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2006, 23: 1084–1087

    Article  ADS  Google Scholar 

  12. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  ADS  MathSciNet  Google Scholar 

  13. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302; Deng F G, Li X H, Zhou H Y, et al. Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 73: 049901(E)

    Article  ADS  Google Scholar 

  14. Zhang Z J. Multiparty quantum secret sharing of secure direct communication. Phys Lett A, 2005, 342: 60–66

    Article  ADS  MATH  Google Scholar 

  15. Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. Phys Lett A, 2006, 354: 190–195

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zhou P, Li X H, Deng F G, et al. Efficient three-party quantum secret sharing with single photons. Chin Phys Lett, 2007, 24: 2181–2184

    Article  ADS  Google Scholar 

  17. Yan F L, Gao T, Li Y C. Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin Phys Lett, 2008, 25: 1187–1190

    Article  ADS  Google Scholar 

  18. Gan G. Multiparty quantum secret sharing using two-photon three-dimensional Bell states. Commun Theor Phys, 2009, 52: 421–424

    Article  ADS  MATH  Google Scholar 

  19. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  MATH  Google Scholar 

  20. Gisin N, Fasel S, Kraus B, et al. Trojan-horse attacks on quantum-keydistribution systems. Phys Rev A, 2006, 73: 022320

    Article  ADS  Google Scholar 

  21. Li X H, Dong F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  22. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049–1052

    Article  ADS  Google Scholar 

  23. Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2897–2899

    ADS  MathSciNet  Google Scholar 

  24. Mihara T. Quantum identification schemes with entanglements. Phys Rev A, 2002, 65: 052326

    Article  ADS  Google Scholar 

  25. Jennewein T, Simon C, Weihs G, et al. Quantum cryptography with entangled photons. Phys Rev Lett, 2000, 84: 4729–4732

    Article  ADS  Google Scholar 

  26. Stucki D, Gisin N, Guinnard O, et al. Quantum key distribution over 67 km with a plug & play system. New J Phys, 2002, 4: 41

    Article  Google Scholar 

  27. Hughes R J, Nordholt J E, Derkacs D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 2002, 4: 43

    Article  Google Scholar 

  28. Beveratos A, Brouri R, Gacoin T, et al. Single photon quantum cryptography. Phys Rev Lett, 2002, 89: 187901

    Article  ADS  Google Scholar 

  29. Gobby C, Yuan Z L, Shields A J. Quantum key distribution over 122 km of standard telecom fiber. Appl Phys Lett, 2004, 84: 3762–3764

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, C., Hwang, T. Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460–464 (2012). https://doi.org/10.1007/s11433-012-4633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4633-9

Keywords

Navigation