Skip to main content
Log in

Deterministic Secure Quantum Communication with Collective Detection Using Single Photons

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two novel single-photon deterministic secure quantum communication (DSQC) schemes with collective detection are proposed. One is a two-party DSQC, the other is a DSQC network. In these two schemes, only single-photon source and single-photon measurements are required, which makes the schemes more feasible with present techniques. Apart from this, a detection strategy called collective detection is utilized in our schemes, in which the detection is taken only once after the whole process of particle transmission. Such detection strategy improves the efficiencies of our protocols and also reduces the cost of realization as the message sender only need to perform unitary operations in the whole communication. What’s more, the efficiencies of qubits and source capacity are both high since almost all the states can be used to transmit message except the ones used for eavesdropping check and each single photon can carry one bit of information. Finally, we prove the security of the our protocols by using the theorems on quantum operation discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.E.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172 (2006)

    Article  ADS  MATH  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  8. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  9. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  11. Wójcik, A., Felbinger, T.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  Google Scholar 

  12. Cai, Q.Y.: The “Ping-Pong” Protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  13. Cai, Q.Y., Li, B.W.: Improving the capacity of the Bostroem-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  17. Wang, C., Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  18. Li, X.H., Zhou, P., Liang, Y.J., et al.: Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett. 23, 1080 (2006)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Li, X.H., Chun, Y.L., et al.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Long, G.L., Deng, F.G., Wang, C., Li, X.H., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  21. Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  22. Zhang, Z.J., Man, Z.X., Li, Y.: Improving Wójcik’s eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333, 46 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  24. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  25. Qin, S.J., Wen, Q.Y., Wen, L.M.: Quantum secure direct communication over collective amplitude damping channel. Sci. China Ser. G 52(8), 1208–1212 (2009)

    Article  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G 51(2), 176–183 (2008)

    Article  MATH  Google Scholar 

  27. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G 50(5), 558–562 (2007)

    Article  Google Scholar 

  28. Gu, B., Huang, Y.Z., Xia, F., Chen, Y.L.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56, 659–663 (2011)

    Article  ADS  Google Scholar 

  29. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893–897 (2005)

    Article  ADS  Google Scholar 

  30. Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by EPR pairs and entanglement swapping. Lett. Nuovo Cimento Soc. Ital. Fis. 119, 313–318 (2004)

    ADS  Google Scholar 

  31. Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure conditional direct communication via EPR pairs. Int. J. Mod. Phys. C 16(8), 1293–1301 (2005)

    Article  ADS  MATH  Google Scholar 

  32. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    ADS  Google Scholar 

  33. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761–5770 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  35. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  36. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  37. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  38. Li, X.H., Deng, F.G., Li, C.Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Koeran Phys. Soc. 49, 1354 (2006)

    MathSciNet  Google Scholar 

  39. Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhang, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831–836 (2011)

    Article  ADS  Google Scholar 

  40. Zhang, Z.J., Man, Z.X., Li, Y.: The improved Bostrom-Felbinger protocol against attacks without eavesdropping. Int. J. Quantum Inf. 2, 521 (2004)

    Article  Google Scholar 

  41. Wang, G.Y., Fang, X.M., Tan, X.H.: Quantum secure direct communication with cluster state. Chin. Phys. Lett. 23, 2658 (2006)

    Article  ADS  Google Scholar 

  42. Shaari, J.S., Lucamarini, M., Wahiddin, M.R.B.: Deterministic six states protocol for quantum communication. Phys. Lett. A 358, 85 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Li, X.H., Deng, F.G., Zhou, H.Y., et al.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  44. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256 (2006)

    Article  ADS  MATH  Google Scholar 

  45. Gu, B., Huang, Y.Z., Xia, F., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  46. Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)

    Article  ADS  Google Scholar 

  47. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  48. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Construction and application of multi-partner communication network. Chin. Phys. B 17, 3991 (2008)

    Article  ADS  Google Scholar 

  49. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282, 2457 (2009)

    Article  ADS  Google Scholar 

  50. Dong, L., Xiu, X.M., Gao, Y., Chi, F.: Quantum secure communication using a class of three-particle W state. Commun. Theor. Phys. 50, 359 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  51. Dong, L., Xiu, X.M., Gao, Y., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  52. Dong, L., Xiu, X.M., Gao, Y., Chi, F.: Deterministic secure quantum communication against collective-dephasing noise by using EPR pairs and auxiliary photons. Opt. Commun. 282, 1688 (2009)

    Article  ADS  Google Scholar 

  53. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G 52(12), 1913–1918 (2009)

    Article  Google Scholar 

  54. Yuan, H., Zhou, J., Zhang, G., Wei, X.F.: Two-step efficient deterministic secure quantum communication using three-qubit W state. Commun. Theor. Phys. 55, 984–988 (2011)

    Article  ADS  Google Scholar 

  55. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  56. Mauro D’Ariano, G., Lo Presti, P., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001)

    Article  Google Scholar 

  57. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  58. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-Party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  59. Wang, G.M., Ying, M.S.: Unambiguous discrimination among quantum operations. Phys. Rev. A, 73, 042301 (2006)

    Article  ADS  Google Scholar 

  60. Deutsch, D., Ekert, A., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  61. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum key—distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  62. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097–2100 (2004)

    Article  ADS  Google Scholar 

  63. Lin, S., Wen, Q.Y., Qin, S.J., Zhu, F.C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  64. Liu, B., Gao, F., Wen, Q.Y.: Eavesdropping and improvement to multiparty quantum secret sharing with collective eavesdropping-check. Int. J. Theor. Phys. 51, 1211–1223 (2012)

    Article  Google Scholar 

  65. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)

    MathSciNet  Google Scholar 

  66. Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602–1606 (2009)

    Article  Google Scholar 

  67. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630–635 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61170270, 61100203, 60903152, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant No. 4112040), Science and Technology on Communication Security Laboratory Foundation (Grant No. 9140C110101110 C1104), the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01, BUPT2011RC0505, 2011PTB-00-29, 2011RCZJ15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Wen, QY., Liu, B. et al. Deterministic Secure Quantum Communication with Collective Detection Using Single Photons. Int J Theor Phys 51, 2787–2797 (2012). https://doi.org/10.1007/s10773-012-1154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1154-2

Keywords

Navigation