Skip to main content
Log in

Phase transition and critical phenomenon of AdS black holes in Einstein-Gauss-Bonnet gravity

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Thermodynamics of phase transition for a black hole in 5D Einstein-Gauss-Bonnet gravity with a negative cosmological constant is studied. As the Bekenstein-Hawking entropy is adopted, we find the heat capacity, volume expansion coefficient and isothermal compressibility are divergent at the critical points, which implies the existence of phase transitions. The fact that the phase transitions are indeed second order is revealed by studying the Ehrenfest’s equations and the Prigogine-Defay ratio. Furthermore near the critical points, we also explicitly calculate the critical exponents of the relevant thermodynamic quantities at fixed charge or fixed temperature. It is shown that the corresponding critical exponents satisfy the thermodynamic scaling law. The Generalized Homogeneous Function hypothesis is also checked by studying the Helmholtz free energy, which is shown to be consistent with the thermodynamic scaling law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking S W. Black hole explosions. Nature, 1974, 248: 30–31; Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43: 199–220

    Article  ADS  Google Scholar 

  2. Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics. Commun Math Phys, 1973, 31: 161–170

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Davies P C W. The thermodynamic theory of black holes. Proc R Soc London A, 1977, 353: 499–521; Davies P CW. Thermodynamic phase transitions of Kerr-Newman black holes in de Sitter space. Class Quantum Grav, 1989, 6: 1909–1914

    Article  ADS  Google Scholar 

  4. Curir A. Rotating black holes as dissipative spin-thermodynamical systems. Gen Rel Grav, 1981, 13: 417–423

    Article  MathSciNet  ADS  Google Scholar 

  5. Pavón D. Phase transition in Reissner-Nordstrom black holes. Phys Rev D, 1991, 43: 2495–2497

    Article  ADS  Google Scholar 

  6. Weinhold F. Metric geometry of equilibrium thermodynamics. J Chem Phys, 1975, 63: 2479–2483; Weinhold F. Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations. J Chem Phys, 1975, 63: 2484–2487; Weinhold F. Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics. J Chem Phys, 1975, 63: 2488–2495; Weinhold F. Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives. J Chem Phys, 1975, 63: 2496–2501; Weinhold F. Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium. J Chem Phys, 1976, 65: 559–564

    Article  MathSciNet  ADS  Google Scholar 

  7. Ruppeiner G. Thermodynamics: A Riemannian geometric model. Phys Rev A, 1979, 20: 1608–1613

    Article  ADS  Google Scholar 

  8. Quevedo H. Geometrothermodynamics of black holes. Gen Rel Grav, 2008, 40: 971–984

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Quevedo H. Geometrothermodynamics. J Math Phys, 2007, 48: 013506

    Article  MathSciNet  ADS  Google Scholar 

  10. Salamon P, Ihrig E, Berry R S. A group of coordinate transformations which preserve the metric of Weinhold. J Math Phys, 1983, 24: 2515–2520

    Article  MathSciNet  ADS  Google Scholar 

  11. Mrugala R, Nulton J D, Schön J C, et al. Statistical approach to the geometric structure of thermodynamics. Phys Rev A, 1990, 41: 3156–3160

    Article  MathSciNet  ADS  Google Scholar 

  12. Maldacena J M. The large-N limit of superconformal field theories and supergravity. Adv Theor Math Phys, 1998, 2: 231–252

    MathSciNet  ADS  MATH  Google Scholar 

  13. Witten E. Anti de Sitter space and holography. Adv Theor Math Phys, 1998, 2: 253–291

    MathSciNet  ADS  MATH  Google Scholar 

  14. Gubser S S. Breaking an Abelian gauge symmetry near a black hole horizon. Phys Rev D, 2008, 78: 065034

    Article  ADS  Google Scholar 

  15. Hartnoll S A, Herzog C P, Horowitz G T. Building a holographic superconductor. Phys Rev Lett, 2008, 101: 031601

    Article  ADS  Google Scholar 

  16. Policastro G, Son D T, Starinets A O. Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. Phys Rev Lett, 2001, 87: 081601; Kovtun P, Son D T, Starinets A O. Holography and hydrodynamics: diffusion on stretched horizons. J High Energy Phys, 2003, 0310: 064; Buchel A, Liu J T. Universality of the shear viscosity from supergravity duals. Phys Rev Lett, 2004, 93: 090602; Kovtun P, Son D T, Starinets A O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys Rev Lett, 2005, 94: 111601

    Article  ADS  Google Scholar 

  17. Witten E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv Theor Math Phys, 1998, 2: 505–532

    MathSciNet  MATH  Google Scholar 

  18. Liu H S, Lu H, Luo M X, et al. Thermodynamical metrics and black hole phase transitions. J High Energy Phys, 2010, 1012: 054

    Article  MathSciNet  ADS  Google Scholar 

  19. Hawking S W, Page D N. Thermodynamics of black holes in anti-de Sitter Space. Commun Math Phys, 1983, 87: 577–588

    Article  MathSciNet  ADS  Google Scholar 

  20. Banerjee R, Modak S K, Samanta S. Glassy phase transition and stability in black holes. Eur Phys J C, 2010, 70: 317–328

    Article  ADS  Google Scholar 

  21. Nieuwenhuizen Th M. Ehrenfest relations at the glass transition: solution to an old paradox. Phys Rev Lett, 1997, 79: 1317–1320

    Article  ADS  Google Scholar 

  22. Abramowitz M, Stegun I A. Handbook of Mathematical Functions. New York: Dover Publications, 1972

    MATH  Google Scholar 

  23. Zemansky M W, Dittman R H. Heat and Thermodynamics: An Intermediate Textbook. California: McGraw-Hill Publications, 1997

    Google Scholar 

  24. Banerjee R, Roychowdhury D. Thermodynamics of phase transition in higher dimensional AdS black holes. J High Energy Phys, 2011, 1111: 004

    Article  MathSciNet  ADS  Google Scholar 

  25. Banerjee R, Ghosh S, Roychowdhury D. New type of phase transition in Reissner Nordstrom-AdS black hole and its thermodynamic geometry. Phys Lett B, 2011, 696: 156–162

    Article  ADS  Google Scholar 

  26. Banerjee R, Modak S K, Samanta S. Second order phase transition and thermodynamic geometry in Kerr-AdS black hole. Phys Rev D, 2011, 84: 064024

    Article  ADS  Google Scholar 

  27. Banerjee R, Modak S K, Roychowdhury D. Thermodynamics of phase transitions in AdS black holes. J High Energy Phys, 2012, 1210: 125

    Article  ADS  Google Scholar 

  28. Banerjee R, Roychowdhury D. Critical phenomena in Born-Infeld AdS black holes. Phys Rev D, 2012, 85: 044040

    Article  ADS  Google Scholar 

  29. Lousto C O. The fourth law of black-hole thermodynamics. Nucl Phys B, 1993, 410: 155–172

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Lau Y K. On the second order phase transition of a Reissner-Nordstrom black hole. Phys Lett A, 1994, 186: 41–46

    Article  ADS  Google Scholar 

  31. Jain S, Mukherji S, Mukhopadhyay S. Notes on R-charged black holes near criticality and gauge theory. J High Energy Phys, 2009, 0911: 051

    Article  MathSciNet  ADS  Google Scholar 

  32. Sahay A, Sarkar T, Sengupta G. On the thermodynamic geometry and critical phenomena of AdS black holes. J High Energy Phys, 2010, 1007: 082

    Article  MathSciNet  ADS  Google Scholar 

  33. Niu C, Tian Y, Wu X N. Critical Pphenomena and thermodynamic geometry of RN-AdS Black Holes. Phys Rev D, 2012, 85: 024017

    Article  ADS  Google Scholar 

  34. Mann R B, Pourhasan R. Gauss-Bonnet black holes and heavy fermion metals. J High Energy Phys, 2011, 1109: 062

    Article  MathSciNet  ADS  Google Scholar 

  35. Wu J P. Holographic fermions in charged Gauss-Bonnet black hole. J High Energy Phys, 2011, 1107: 106

    Article  ADS  Google Scholar 

  36. Yoshino H. Black hole initial data in Gauss-Bonnet gravity: momentarily static case. Phys Rev D, 2011, 83: 104010

    Article  ADS  Google Scholar 

  37. Taj S, Quevedo H. Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory. arXiv: 1104.3195 [hep-th]

  38. Kim H C, Cai R G. Slowly rotating charged Gauss-Bonnet black holes in AdS spaces. Phys Rev D, 2008, 77: 024045

    Article  MathSciNet  ADS  Google Scholar 

  39. Cai R G. Gauss-Bonnet black holes in AdS spaces. Phys Rev D, 2002, 65: 084014

    Article  MathSciNet  ADS  Google Scholar 

  40. Myers R C, Simon J Z. Black-hole thermodynamics in Lovelock gravity. Phys Rev D, 1988, 38: 2434–2444; Cai R G. A note on thermodynamics of black holes in Lovelock gravity. Phys Lett B, 2004, 582: 237–242

    Article  MathSciNet  ADS  Google Scholar 

  41. Cvetic M, Nojiri S, Odintsov S D. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity. Nucl Phys B, 2002, 628: 295–330

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Brihaye Y, Radu E. Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method. J High Energy Phys, 2008, 0809: 006

    Article  MathSciNet  ADS  Google Scholar 

  43. Wiltshire D L. Black holes in string-generated gravity models. Phys Rev D, 1988, 38: 2445–2456

    Article  MathSciNet  ADS  Google Scholar 

  44. Quevedo H, Sanchez A. Geometrothermodynamics of asymptotically anti-de Sitter black holes. J High Energy Phys, 2008, 0809: 034

    Article  MathSciNet  ADS  Google Scholar 

  45. Jäckle J. Models of the glass transition. Rep Prog Phys, 1986, 49: 171–231

    Article  ADS  Google Scholar 

  46. Hankey A, Stanley H E. Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality. Phys Rev B, 1972, 6: 3515–3542

    Article  ADS  Google Scholar 

  47. Stanley H E. Introduction to Phase Transitions and Critical Phenomena. New York: Oxford University Press, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianMing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Zeng, X. & Liu, X. Phase transition and critical phenomenon of AdS black holes in Einstein-Gauss-Bonnet gravity. Sci. China Phys. Mech. Astron. 56, 1652–1663 (2013). https://doi.org/10.1007/s11433-013-5107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5107-4

Keywords

Navigation