Skip to main content
Log in

Thermodynamics of Ayón-Beato–García–AdS black holes in 4D Einstein–Gauss–Bonnet gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Within a family of Ayón-Beato–García black holes in four-dimensional Einstein–Gauss–Bonnet (EGB) gravity in Anti-de Sitter space-time geometries, we study various thermodynamical aspects by computing the relevant quantities which include the mass, the Hawking temperature, the entropy, the heat capacity, and the Gibbs free energy. We find that the heat capacity is discontinuous at critical values of the radial coordinate, with sign changes that hint at transitions between small and large black holes near such critical values. After providing evidence that such solutions exhibit a Pv criticality, we analyze the Gibbs free energy and show that it shares similarities with the Van der Waals phase transitions. In order to confirm the second-order nature of the phase transition points, we study the thermodynamical curvature of the Ruppeiner metric, finding that the singular points of such a curvature coincide with the ones at which the heat capacity diverges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

Notes

  1. We recall that the generalized moduli space gives rise to an extended entropy expression going beyond the Bekenstein–Hawking entropy-area relation (namely, \(S=A/4\), where \(A=4\pi r_{+}^{2}\)) [26].

  2. By taking \(q=0\), one can recover the pressure

    $$\begin{aligned} P=\frac{T(r_{+}^{2}+\alpha )}{2r_{+}^{3}}-\frac{r_{+}^{2}-\alpha }{8\pi r_{+}^{4}}. \end{aligned}$$
    (4.3)

References

  1. B. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837

    Article  ADS  MathSciNet  Google Scholar 

  2. K. Akiyama et al., First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. L4(1), 875 (2019). arXiv:1906.11241

    Google Scholar 

  3. K. Akiyama et al., First M87 event horizon telescope results. V. Imaging the central supermassive black hole. Astrophys. J. L5(1), 875 (2019)

    Google Scholar 

  4. K. Akiyama et al., First M87 event horizon telescope results. VI. Imaging the central supermassive black hole. Astrophys. J. L6(1), 875 (2019)

    Google Scholar 

  5. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87(4), 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Cvetic et al., Embedding AdS black holes in ten and eleven dimensions. Nucl. Phys. B 558, 96 (1999). arXiv:hep-th/9903214

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S.W. Wei, Y.C. Zou, Y.X. Liu, R.B. Mann, Curvature radius and Kerr black hole shadow. JCAP 08, 030 (2019). arXiv:1904.07710

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Belhaj, H. Belmahi, M. Benali, W. El Hadri, H. El Moumni, E. Torrente-Lujan, Shadows of 5D Black Holes from string theory. Phys. Lett. B 812, 136025 (2021). arXiv:2008.13478

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Belhaj, H. Belmahi, M. Benali, Superentropic AdS black hole shadows. Phys. Lett. B 821, 136619 (2021). arXiv:2110.06771

    Article  MathSciNet  MATH  Google Scholar 

  10. P.V.P. Cunha, C.A.R. Herdeiro, B. Kleihaus, J. Kunz, E. Radu, Shadows of Einstein–Dilaton–Gauss–Bonnet black holes. Phys. Lett. B 768, 773 (2017). arXiv:1701.00079

    Article  MATH  Google Scholar 

  11. D. Kubiznak, R.B. Mann, M. Teo, Black hole chemistry: thermodynamics with Lambda. Class. Quantum Gravity 34, 063001 (2017). arXiv:1608.06147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Y. Liu, D.C. Zou, B. Wang, Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasi normal modes. JHEP 09, 179 (2014). arXiv:1405.2644

    Article  ADS  MATH  Google Scholar 

  13. A. Belhaj, A. El Balali, W. El Hadri, E. Torrente-Lujan, On universal constants of AdS black holes from Hawking–Page phase transition. Phys. Lett. B 811, 135871 (2020). arXiv:2010.07837

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Rajagopal, D. Kubiznak, R.B. Mann, Van der Waals black hole. Phys. Lett. B 737, 277 (2014). arXiv:1408.1105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Belhaj, H. Belmahi, M. Benali, A. Segui, Thermodynamics of AdS black holes from deflection angle formalism. Phys. Lett. B 817, 136313 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Bardeen, Non-singular general relativistic gravitational collapse, in Proceedings of the international conference GR5 (Tbilisi, Georgia, 1968)

  17. E. Ayón-Beato, A. García, Regular black hole in general relativity coupled to nonlinear electro-dynamics. Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  18. E. Ayón-Beato, A. García, New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 464, 25 (1999). arXiv:hep-th/9911174

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. E. Ayón-Beato, A. García, The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149 (2000). arXiv:gr-qc/0009077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. E. Ayón-Beato, A. García, Four-parametric regular black hole solution. Gen. Relativ. Gravit. 37, 635 (2005). arXiv:gr-qc/0403229

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. D. Lovelock, The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. D.G. Boulware, S. Deser, String-generated gravity models. Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  23. J.T. Wheeler, Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.G. Ghosh, R. Kumar, Generating black holes in 4D Einstein–Gauss–Bonnet gravity. Class. Quantum Gravity 37, 245008 (2020). arXiv:2003.12291

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S.G. Ghosh, S.D. Maharaj, Radiating black holes in the novel 4D Einstein-Gauss-Bonnet gravity. Phys. Dark. Univ. 30, 100687 (2020). arXiv:2003.09841

    Article  Google Scholar 

  26. A. Kumar, D.V. Singh, S.G. Ghosh, D-dimensional Bardeen–AdS black holes in Einstein–Gauss–Bonnet theory. Eur. Phys. J. C 79, 275 (2019)

    Article  ADS  Google Scholar 

  27. S.G. Ghosh, D.V. Singh, R. Kumar, S.D. Maharaj, Phase transition of AdS black holes in 4D EGB gravity coupled to nonlinear electrodynamics. Ann. Phys. 424, 168347 (2021). arXiv:2006.00594

    Article  MathSciNet  MATH  Google Scholar 

  28. D.V. Singh, B.K. Singh, S. Upadhyay, 4D AdS Einstein–Gauss–Bonnet black hole with Yang–Mills field and its thermodynamics. Ann. Phys. 434, 168642 (2021)

    Article  MATH  Google Scholar 

  29. B. Zwiebach, Curvature squared terms and string theories. Phys. Lett. B 315, 315 (1985)

    Article  ADS  Google Scholar 

  30. K. Kashima, The M2-brane solution of heterotic M-theory with the Gauss–Bonnet \(R^{2}\) terms. Prog. Theor. Phys. 105, 301 (2001)

    Article  ADS  MATH  Google Scholar 

  31. Y. Tomozawa, Quantum corrections to gravity. arXiv:1107.1424

  32. M. Gurses, T.C. Sisman, B. Tekin, Is there a novel Einstein–Gauss–Bonnet theory in four dimensions? Eur. Phys. J. C 80, 647 (2020)

    Article  ADS  Google Scholar 

  33. M. Gurses, T.C. Sisman, B. Tekin, Comment on Einstein–Gauss–Bonnet gravity in four-dimensional spacetime. Phys. Rev. Lett. 125, 149001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Banerjee, S. Hansraj, L. Moodly, Charged stars in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 81, 790 (2021)

    Article  MATH  Google Scholar 

  35. I. Fomin, Gauss–Bonnet term corrections in scalar field cosmology. Eur. Phys. J. C 80, 1145 (2020)

    Article  ADS  Google Scholar 

  36. M. Hohmann, C. Pfeifer, N. Voicu, Canonical variational completion and 4D Gauss–Bonnet gravity. Eur. Phys. J. Plus 136, 180 (2021)

    Article  Google Scholar 

  37. S.I. Kruglov, New model of 4D Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics. Universe 7, 249 (2021). arXiv:2108.07695

    Article  ADS  Google Scholar 

  38. D. Glavan, C. Lin, Gauss–Bonnet gravity in 4-dimensional space-time. Phys. Rev. Lett. 124, 081301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.D. Bekenstein, Extraction of energy and charge from a black hole. Phys. Rev. D 7, 949 (1973)

    Article  ADS  Google Scholar 

  40. F. Weinhold, Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 63, 2479 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Quevedo, A. Sanchez, S. Taj, A. Vazquez, Phase transitions in geometrothermodynamics. Gen. Relativ. Gravit. 43, 1153 (2011). arXiv:1010.5599

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  43. P. Wang, H. Wu, H. Yang, Thermodynamic geometry of AdS black holes and black holes in a cavity. Eur. Phys. J. C 80, 216 (2020). arXiv:1910.07874

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AB would like to thank A. Belfakir, H. Belmahi, M. Benali, H. El Moumni, R. Harzallah, Y. Hassouni, A. Lowe, A. Marrani, P. Meessen, and M. B. Sedra for discussions, collaborations, and scientific help. YS would like to thank D. V. Singh for email discussions on related subjects. The authors would like also to thank the editor and the anonymous referee for interesting comments and suggestions. This work is partially supported by the ICTP through AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belhaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhaj, A., Sekhmani, Y. Thermodynamics of Ayón-Beato–García–AdS black holes in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. Plus 137, 278 (2022). https://doi.org/10.1140/epjp/s13360-022-02495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02495-z

Navigation