Skip to main content
Log in

Predicting the solar maximum with the rising rate

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (R max) and the rising rate (β a) at Δm months after the solar minimum (R min) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about Δm = 20 months. The prediction error of R max based on β a is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when Δm ⩾ 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October, 2013 with a size of R max = 84 ± 33 at the 90% level of confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldmeier M. Über die struktur der sonnenflecken. Astron Mitt Zrich, 1939, 14: 439–450

    ADS  Google Scholar 

  2. Hathaway D H, Wilson R M, Reichmann E J. Group sunspot numbers: Sunspot cycle characteristics. Sol Phys, 2002, 211(1): 357–370

    Article  ADS  Google Scholar 

  3. Du Z L, Wang H N, Zhang L Y. Correlation function analysis between sunspot cycle amplitudes and rise times. Sol Phys, 2009, 255(1): 179–185

    Article  ADS  Google Scholar 

  4. Cameron R, Schüssler M. A robust correlation between growth rate and amplitude of solar cycles: Consequences for prediction methods. Astrophys J, 2008, 685(2): 1291–1296

    Article  ADS  Google Scholar 

  5. Du Z L, Li R, Wang H N. The predictive power of Ohl’s precursor method. Astron J, 2009, 138(6): 1998–2001

    Article  ADS  Google Scholar 

  6. Du Z L, Wang H N. Is a higher correlation necessary for a more accurate prediction? Sci China-Phys Mech Astron, 2011, 54(1): 172–175

    Article  ADS  Google Scholar 

  7. Du Z L. The relationship between prediction accuracy and correlation coefficient. Sol Phys, 2011, 270(1): 407–416

    Article  ADS  Google Scholar 

  8. Du Z L. The shape of solar cycle described by a modified gaussian function. Sol Phys, 2011, 273(1): 231–253

    Article  ADS  Google Scholar 

  9. Kane R P. Size of the coming solar cycle 24 based on Ohl’s precursor method, final estimate. Ann Geophys, 2010, 28(7): 1463–1466

    Article  ADS  Google Scholar 

  10. Pesnell WD. Predictions of solar cycle 24. Sol Phys, 2008, 252(1): 209–220

    Article  ADS  Google Scholar 

  11. Messerotti M, Zuccarello F, Guglielmino S L, et al. Solar weather event modelling and prediction. Space Sci Rev, 2009, 147(3): 121–185

    Article  ADS  Google Scholar 

  12. Du Z L. The solar cycle: A new prediction technique based on logarithmic values. Astrophys Space Sci, 2011, doi: 10.1007/s10509-011-0906-4

  13. Wang J L, Miao J, Liu S Q, et al. Prediction of the smoothed monthly mean sunspot numbers for solar cycle 24. Sci China Ser G-Phys Mech Astron, 2008, 51(12): 1938–1946

    Article  ADS  Google Scholar 

  14. Wang J L, Gong J C, Liu S Q, et al. The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24. Chin J Astron Astrophys, 2002, 2(6): 557–562

    Article  ADS  Google Scholar 

  15. Wang J L, Zong W G, Le G M, et al. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping. Res Astron Astrophys, 2009, 9(2): 133–136

    Article  ADS  Google Scholar 

  16. Le G M. Wavelet analysis of the Schwabe cycle properties in solar activity. Chin J Astron Astrophys, 2004, 4(6): 578–582

    Article  ADS  Google Scholar 

  17. Li K J. What does the Sun tell and hint now? Res Astron Astrophys, 2009, 9(9): 959–965

    Article  ADS  Google Scholar 

  18. Ohl A I. A preliminary forecast of some parameters of cycle No. 21 of the solar activity. Solnice Danie, 1976, 9: 73–75

    ADS  Google Scholar 

  19. Layden A C, Fox P A, Howard J M, et al. Dynamo-based scheme for forecasting the magnitude of solar activity cycles. Sol Phys, 1991, 132: 1–40

    Article  ADS  Google Scholar 

  20. Thompson R J. A technique for predicting the amplitude of the solar cycle. Sol Phys, 1993, 148(2): 383–388

    Article  ADS  Google Scholar 

  21. Shastri S. An estimate for the size of cycle 23 using multivariate relationships. Sol Phys, 1998, 180(1): 499–504

    Article  MathSciNet  ADS  Google Scholar 

  22. Schüssler M. Are solar cycles predictable? Astron Nachr, 2007, 328(10): 1087–1091

    Article  ADS  MATH  Google Scholar 

  23. Cameron R, Schüssler M. Solar cycle prediction using precursors and flux transport models. Astrophys J, 2007, 659(1): 801–811

    Article  ADS  Google Scholar 

  24. Du Z L, Wang H N, Zhang L Y. A running average method for predicting the size and length of a solar cycle. Chin J Astron Astrophys, 2008, 8(4): 477–488

    Article  ADS  Google Scholar 

  25. Du Z L, Wang H N. Does a low solar cycle minimum hint at a weak upcoming cycle? Res Astron Astrophys, 2010, 10(10): 950–955

    Article  MathSciNet  ADS  Google Scholar 

  26. Svalgaard L, Cliver E W, Kamide Y. Sunspot cycle 24: Smallest cycle in 100 years? Geophys Res Lett, 2005, 32(1): L01104

    Article  Google Scholar 

  27. Schatten K H. Fair space weather for solar cycle 24. Geophys Res Lett, 2005, 32(21): L21106

    Article  ADS  Google Scholar 

  28. Li K J, Feng W, Liang H F, et al. A brief review on the presentation of cycle 24, the first integrated solar cycle in the new millennium. Ann Geophys, 2011, 29(2): 341–348

    Article  ADS  Google Scholar 

  29. Li K J, Feng W, Liang H F. The abnormal 24th solar cycle—the first complete solar cycle of the new millennium (in Chinese). Sci Sin Phys Mech Astron, 2010, 40(10): 1293–1301

    Google Scholar 

  30. Choudhuri A R, Chatterjee P, Jiang J. Predicting solar cycle 24 with a solar dynamo model. Phys Rev Lett, 2007, 98(13): 131103

    Article  ADS  Google Scholar 

  31. Jiang J, Chatterjee P, Choudhuri A R. Solar activity forecast with a dynamo model. Mon Not Roy Astron Soc, 2007, 381(4): 1527–1542

    Article  ADS  Google Scholar 

  32. Dikpati M, Gilman P A. Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys J, 2006, 649(1): 498–514

    Article  ADS  Google Scholar 

  33. Li K J, Gao P X, Su T W. Estimating the size and timing of the maximum amplitude of solar cycle 24. Chin J Astron Astrophys, 2005, 5(5): 539–545

    Article  ADS  Google Scholar 

  34. Du Z L, Wang H N. The prediction method of similar cycles. Res Astron Astrophys, 2011, 11(12): 1482–1492

    Article  ADS  Google Scholar 

  35. Wang Y M, Sheeley N R. Understanding the geomagnetic precursor of the solar cycle. Astrophys J, 2009, 694(1): L11–L15

    Article  ADS  Google Scholar 

  36. Hiremath KM. Prediction of solar cycle 24 and beyond. Astrophys Space Sci, 2008, 314(1–3): 45–49

    Article  ADS  Google Scholar 

  37. Rigozo N R, Souza E M P, Evangelista H, et al. Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25. J Atmos Sol Terr Phys, 2011, 73(11–12): 1294–1299

    Article  Google Scholar 

  38. Dabas R S, Sharma K, Das R M, et al. A prediction of solar cycle 24 using a modified precursor method. Sol Phys, 2008, 250(1): 171–181

    Article  ADS  Google Scholar 

  39. Tlatov A G. Some notes concerning the prediction of the amplitude of the solar activity cycles. Astrophys Space Sci, 2009, 323(3): 221–224

    Article  ADS  Google Scholar 

  40. Hathaway D H, Wilson R M. Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys Res Lett, 2006, 33(18): L18101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhanLe Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Wang, H. Predicting the solar maximum with the rising rate. Sci. China Phys. Mech. Astron. 55, 365–370 (2012). https://doi.org/10.1007/s11433-011-4612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4612-6

Keywords

Navigation