Skip to main content
Log in

Dynamo-based scheme for forecasting the magnitude of solar activity cycles

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this paper we present a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the Sun's polar magnetic field strength at the preceeding activity minimum. Because direct measurements of this quantity are difficult to obtain, we evaluate the quality of a number of proxy indicators already used by other authors which are physically related to the Sun's polar field. We subject these indicators to a rigorous statistical analysis, and specify in detail the analysis technique for each indicator in order to simplify and systematize reanalysis for future use. We find that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima.

We also present a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. We then apply the scheme to the current cycle 22, and estimate a maximum smoothed International sunspot number of 171 ± 26, which can be expressed alternatively as a smoothed 2800 MHz radio flux (F 10.7) of 211 ± 23 × (10−22 Wm−2Hz−1), or as a smoothed sunspot area of 2660 ± 430 millionths of a solar disk. Once the actual maximum for cycle 22 has been established, we will have both additional statistics for all the proxy indicators, and a clearer indication of how accurately the present scheme can predict solar activity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altrock, R. C. (ed.): 1988, Proceedings of the Ninth Sacramento Peak Summer Symposium, National Solar Observatory, Sunspot, p. 414.

    Google Scholar 

  • Babcock, H. W.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Bao, K.: 1984, Publ. Beijing Astron. Obs. 5, 1.

    Google Scholar 

  • Bao, K.: 1989, Publ. Beijing Astron. Obs. 12, 47.

    Google Scholar 

  • Bevington, P. R.: 1969, Data Reduction and Final Analysis for the Physical Sciences, McGraw-Hill, New York, p. 73.

    Google Scholar 

  • Billings, D. E.: 1966, A Guide to the Solar Corona, Academic Press, New York, p. 226.

    Google Scholar 

  • Brown, G. M.: 1981, Solar Phys. 74, 125.

    Google Scholar 

  • Brown, G. M.: 1986, in P. A. Simon, G. Heckman, and M. A. Shea (eds.), Solar-Terrestrial Prediction Proceedings, NOAA, Boulder, p. 1.

    Google Scholar 

  • Brown, G. M.: 1988, Nature 333, 121.

    Google Scholar 

  • Brown, G. M. and Williams, W. R.: 1969, Planetary Space Sci. 17, 445.

    Google Scholar 

  • Butcher, E. C. and Brown, G. M.: 1981, Geophys. J. Roy. Astron. Soc. 64, 513.

    Google Scholar 

  • Cowling, T. G.: 1953, in G. P. Kuiper (ed.), The Sun, University of Chicago Press, Chicago, p. 575.

    Google Scholar 

  • Foukal, P. and Lean, J.: 1988, Astrophys. J. 328, 347.

    Google Scholar 

  • Gonzalez, G. and Schatten, K. H.: 1987, Solar Phys. 114, 189.

    Google Scholar 

  • Hirman, J. W., Heckman, G. R., Greer, M. S., and Smith, J. B.: EOS: SPR News, 18 October, 1988.

  • Howard, R.: 1984, Ann. Rev. Astron. Astrophys. 22, 131.

    Google Scholar 

  • Howard, R. and LaBonte, B. J.: 1980, Astrophys. J. 239, L33.

    Google Scholar 

  • IAU Quarterly Bulletin on Solar Activity 1–27, presently published by National Astronomical Observatory, Tokyo.

  • Jeffreys, W. H., Fitzpatrick, M. J., and McArthur, B. E.: 1988, GaussFit: A System for Least Squares and Robust Estimation; User's Manual, University of Texas, Austin.

    Google Scholar 

  • Kane, R. P.: 1978, Nature 274, 139.

    Google Scholar 

  • Kane, R. P.: 1987, Solar Phys. 108, 415.

    Google Scholar 

  • Kane, R. P.: 1989, Solar Phys. 122, 175.

    Google Scholar 

  • Leighton, R. B.: 1969, Astrophys. J. 156, 1.

    Google Scholar 

  • Loucif, M. L. and Koutchmy, S.: 1989, Astron. Astrophys. Suppl. Ser. 77, 45.

    Google Scholar 

  • Mayaud, P.-N.: 1972, J. Geophys. Res. 77, 6870.

    Google Scholar 

  • CD ROM NGDC01: 1987, National Geophysical Data Center, NOAA, U.S. Dept. of Commerce.

  • Press, W. H., Flannery, A. P., Teukolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, p. 487.

    Google Scholar 

  • Rosenberg, R. L. and Coleman, P. J., Jr.: 1969, J. Geophys. Res. 74, 5611.

    Google Scholar 

  • Schatten, K. H.: 1971, Rev. Geophys. Space Sci. 9, 773.

    Google Scholar 

  • Schatten, K. H.: 1988a, Geophys. Res. Letters 15, 121.

    Google Scholar 

  • Schatten, K. H.: 1988b, private communication.

  • Schatten, K. H.: 1990, Solar Phys. 125, 185.

    Google Scholar 

  • Schatten, K. H. and Hedin, A. E.: 1984, Geophys. Res. Letters 1, 873.

    Google Scholar 

  • Schatten, K. H. and Sofia, S.: 1987, Geophys. Res. Letters 14, 632.

    Google Scholar 

  • Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978, Geophys. Res. Letters 5, 411.

    Google Scholar 

  • Scherrer, P. H., Wilcox, J. M., Kotov, V., Severny, A. B., and Howard, R.: 1977, Solar Phys. 52, 3.

    Google Scholar 

  • Scherrer, P. H., Wilcox, J. M., Svalgaard, L., Duvall, T. L., Jr., Dittmer, P. H., and Gustafson, E. K.: 1977, Solar Phys. 54, 353.

    Google Scholar 

  • Sheeley, N. R. Jr.: 1964, Astrophys. J. 140, 731.

    Google Scholar 

  • Sheeley, N. R. Jr.: 1966, Astrophys. J. 144, 728.

    Google Scholar 

  • Sheeley, N. R. Jr.: 1976, J. Geophys. Res. 81, 3462.

    Google Scholar 

  • Simon, P. A. and Legrand, J. P.: 1987, Astron. Astrophys. 182, 329.

    Google Scholar 

  • Solar Geophysical Data, NOAA, U.S. Dept. of Commerce, Boulder.

  • Snodgrass, H. B. and Wilson, P. R.: 1987, Nature 328, 696.

    Google Scholar 

  • Svalgaard, L.: 1972, Danish Meteorological Institute Geophysical Papers, R-29, Charlottenlund, Denmark.

  • Svalgaard, L.: 1972, J. Geophys. Res. 77, 4027.

    Google Scholar 

  • Svalgaard, L.: 1977, in J. Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder, p. 371.

    Google Scholar 

  • Svalgaard, L. and Wilcox, J. M.: 1976, Nature 262, 766.

    Google Scholar 

  • Svalgaard, L., Duvall, T. L. Jr., and Scherrer, P. H.: 1978, Solar Phys. 58, 225.

    Google Scholar 

  • van de Hulst, H. C.: 1953, in G. P. Kuiper (ed.), The Sun, University of Chicago Press, Chicago, p. 207.

    Google Scholar 

  • Wilson, R. M.: 1988, Geophys. Res. Letters 15, 125.

    Google Scholar 

  • Wilson, R. M.: 1988, Solar Phys. 117, 179.

    Google Scholar 

  • Wilson, P. R., Altrock, R. C., Harvey, K. L., Martin, S. F., and Snodgrass, H. B.: 1988, Nature 333, 748.

    Google Scholar 

  • Wolf, R.: 1884, Astron. Mitt. Zürich, No. 61.

  • Yoshimura, H.: 1975, Astrophys. J. Suppl. Ser. 29, 467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layden, A.C., Fox, P.A., Howard, J.M. et al. Dynamo-based scheme for forecasting the magnitude of solar activity cycles. Sol Phys 132, 1–40 (1991). https://doi.org/10.1007/BF00159127

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00159127

Keywords

Navigation