Skip to main content
Log in

Collision dynamics of He@C60+He@C60 at low energies

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A semi-empirical molecular dynamics model is developed. The central collisions of C60+C60 and He@C60+He@C60 at different incident energies are investigated based on this model. It is found that the dimer structures have been produced at proper incident energies and these fullerene dimers could be formed by a self-assembly of C60 fullerene and He@C60. The He atom has a significant effect at higher incident energy and this embedded He atom can enhance the stability of the dimer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto H W, Heath J R, O’Brien S C, et al. Buckminsterfullerene. Nature, 1985, 318: 162–163

    Article  ADS  Google Scholar 

  2. Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379

    Article  ADS  Google Scholar 

  3. Calvert P. A recipe for strength. Nature, 1999, 399(6733): 210–211

    Article  ADS  Google Scholar 

  4. Ebbesen T W. Carbon nanotube. Rev Mater Sci, 1994, 24: 235–264

    Article  Google Scholar 

  5. Chai Y, Guo T, Jin C. Fullerenes with metal inside. J Phys Chem, 1991, 95: 7564–7568

    Article  Google Scholar 

  6. Erwin S C, Pickett W E. Theoretical Fermi-surface properties and superconducting parameters for K3C60. Science, 1991, 254(5033): 842–845

    Article  ADS  Google Scholar 

  7. Mccauley J P Jr, Zhu Q, Coustel N, et al. Synthesis, structure, and superconducting properties of single-phase Rb3C60: A new, convenient method for the preparation of M3C60 super conductors. J Am Chem Soc, 1991, 113: 8537–8538

    Article  Google Scholar 

  8. Christian J F, Wan Z, Anderson S L. Ne+ + C60 collisions—The dynamics of charge and energy transfer, fragmentation, and endohedral complex formation. J Chem Phys, 1993, 99: 3468–3479

    Article  ADS  Google Scholar 

  9. de Heer W. The physics of simple metal clusters: Experimental aspects and simple models. Rev Mod Phys, 1993, 65(3): 611–676

    Article  ADS  Google Scholar 

  10. Campbell E E B, Schyja V, Ehlich R, et al. Observation of molecular fusion and deep inelastic scattering in C60 ++C60 collisions. Phys Rev Lett, 1993, 70(3): 263–266

    Article  ADS  Google Scholar 

  11. Schmidt R, Seifert G, Lutz H O. Cluster-cluster collisions (II): Cluster molecules—A stable state of matter? Phys Lett A, 1991, 158(5): 237–241

    Article  ADS  Google Scholar 

  12. Wang G H, Zhang H Q, Han M. Fractal structure in the coalescence process of copper clusters. Phys Lett A, 1994, 189(3): 218–221

    Article  ADS  Google Scholar 

  13. Zhang F S, Spiegelmann F, Suraud E, et al. On the formation of transient (Na19)2 and (Na20)2 cluster dimmers from molecular dynamics simulations. Phys Lett A, 1994, 193: 75–81

    Article  ADS  Google Scholar 

  14. Zhang F S, Suraud E, Spiegelmann F, et al. Systematic study of (Nan)2 dimer transient state in Nan + Nan collisions (n = 8, 9, 19, and 20). Z Phys D, 1995, 35: 131–139

    Article  ADS  Google Scholar 

  15. Takai T, Lee C, Halicioglu T, et al. A model potential function for carbon systems: Clusters. J Phys Chem, 1990, 94: 4480–4482

    Article  Google Scholar 

  16. Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 1990, 42(15): 9458–9471

    Article  ADS  Google Scholar 

  17. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett, 1988, 61(25): 2879–2882

    Article  ADS  Google Scholar 

  18. Ke X Z, Zhu Z Y, Wang F, et al. D6hC36 molecular dynamics simulations. Phys Lett A, 1999, 255: 294–300

    Article  ADS  Google Scholar 

  19. Ke X Z, Zhu Z Y, Zhang F S, et al. Molecular dynamics simulation of C20 fullerene. Chem Phys Lett, 1990, 313: 40–44

    Article  Google Scholar 

  20. Zhang W, Xu Z J, Zhu Z Y. Study of thermal stability of fullerenes by molecular dynamics. Int J Mod Phys B, 2005, 19: 2892–2898

    Article  ADS  Google Scholar 

  21. Amos A T, Palmer T F, Walters A, et al. Atom-atom potential parameters for van der waals complexes of aromatics and rare-gas atoms. Chem Phys Lett, 1990, 172(6): 503–508

    Article  ADS  Google Scholar 

  22. Almeida M T, Pawlik T, Weidinger A, et al. Observation of atomlike Nitrogen in Nitrogenimplanted solid C60. Phys Rev Lett, 1996, 77(7): 1075–1078

    Article  ADS  Google Scholar 

  23. Lu J P, Li X P, Martin R M. Ground state and phase transitions in solid C60. Phys ReV Lett, 1992, 68: 1551–1554

    Article  ADS  Google Scholar 

  24. Gillan E G, Yeretzian C, Min K S, et al. Endohedral rare-earth fullerene complexes. J Phys Chem, 1992, 96: 6869–6871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengShou Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10575012, 10435020, A0325401 and 0254002) and the Beijing Education Committee (Grant No. XK100270454)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Zhang, F. & Zhou, H. Collision dynamics of He@C60+He@C60 at low energies. Sci. China Ser. G-Phys. Mech. Astron. 51, 765–772 (2008). https://doi.org/10.1007/s11433-008-0077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0077-7

Keywords

Navigation