Skip to main content
Log in

Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Some pathological conditions, such as infections and febrile seizures, may cause temperature fluctuations in the brain. We ask here how these temperature fluctuations, particularly hypothermia and hyperthermia, affect the cortical information coding performance and response reliability of warm-blooded animals. We studied this issue by a combination of in vitro whole-cell patch clamp recordings from cortical pyramidal neurons and computational simulations of Hodgkin–Huxley cortical neuronal model at different temperatures. A significantly higher reliability of the neuronal response to repeated input signals was observed at physiological temperature (\(\sim 35\,^{\circ }\hbox {C}\)) than that at a much lower temperature (\(\sim 24\,^{\circ }\hbox {C}\)) or upon hyperthermia (\(\sim 41\,^{\circ }\hbox {C}\)). In addition, the firing rate of excitatory neurons (i.e., pyramidal neurons) was increased gradually, while it decreased gradually for inhibitory neurons (e.g., PV interneurons) as the temperature increased from 25 to \(40\,^{\circ }\hbox {C}\). The opposite changes in the response activity level between pyramidal neurons and interneurons suggested a shift in the excitatory/inhibitory (E/I) balance in the local network circuit as a function of changing temperature. An analysis of the information coding efficiency suggested that the pyramidal neurons displayed the maximal response reliability with the highest coding efficiency and information transmission rate at body temperature, suggesting that the E/I balance observed at this temperature might be optimal for enhancing information coding in cortical neurons. In addition, we applied tetrodotoxin and 4-aminopyridine to partially block \(\hbox {Na}^{+}\) and \(\hbox {K}^{+}\) channels, respectively, and observed that a change in sodium or potassium conductance could also alter the neuronal response reliability of pyramidal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van Rossum, M.C., O’Brien, B.J., Smith, R.G.: Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89(5), 2406–2419 (2003)

    Article  Google Scholar 

  2. Movshon, J.A.: Reliability of neuronal responses. Neuron 27(3), 412–414 (2000)

    Article  Google Scholar 

  3. Cudmore, R.H., Fronzaroli-Molinieres, L., Giraud, P., Debanne, D.: Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J. Neurosci. 30(38), 12885 (2010)

    Article  Google Scholar 

  4. Mainen, Z.F., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995)

    Article  Google Scholar 

  5. Mcadams, C.J., Maunsell, J.H.R.: Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23(4), 765–773 (1999)

    Article  Google Scholar 

  6. Schneidman, E., Freedman, B., Segev, I.: Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10(7), 1679–1703 (1998)

    Article  Google Scholar 

  7. Yu, Y.G.: Constant warm body temperature ensures high response reliability of neurons in endothermic brains. Austin J. Comput. Biol. Bioinf. 1(1), 5 (2014)

    Google Scholar 

  8. Ermentrout, G.B., Galán, R.F., Urban, N.N.: Reliability, synchrony and noise. Trends Neurosci. 31(8), 428–434 (2008)

    Article  Google Scholar 

  9. Thiele, A., Herrero, J.L., Distler, C., Hoffmann, K.P.: Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J. Neurosci. 32(47), 16602 (2012)

    Article  Google Scholar 

  10. Guo, D.Q., Perc, M., Liu, T.J., Yao, D.Z.: Functional importance of noise in neuronal information processing. Europhys. Lett. 124(5), 50001 (2018)

    Article  Google Scholar 

  11. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)

    Article  Google Scholar 

  12. Yu, Y.G., Wang, W., Wang, J.F., Liu, F.: Resonance-enhanced signal detection and transduction in the Hodgkin–Huxley neuronal systems. Phys. Rev. E 63(2), 12 (2001)

    Google Scholar 

  13. Fellous, J., Houweling, A., Modi, R., Rao, R., Tiesinga, P., Sejnowski, T.: Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J. Neurophysiol. 85(4), 1782–1787 (2001)

    Article  Google Scholar 

  14. Yu, Y.G., Liu, F., Wang, J., Wang, W.: Spike timing precision for a neuronal array with periodic signal. Phys. Lett. A 282(1–2), 23–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, Y.J., Qiao, W.H., Liu, K.F., Zhong, H.Y., Yao, H.S.: Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat. Commun. 6(1), 6802–6802 (2014)

    Article  Google Scholar 

  16. Guo, D.Q., Chen, M.M., Perc, M., Wu, S.D., Xia, C., Zhang, Y.S., Xu, P., Xia, Y., Yao, D.Z.: Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhys. Lett. 114(3), 30001 (2016)

    Article  Google Scholar 

  17. Guo, D.Q., Wu, S.D., Chen, M.M., Perc, M., Zhang, Y.S., Ma, J.L., Cui, Y., Xu, P., Xia, Y., Yao, D.Z.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Article  Google Scholar 

  18. Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)

    Article  MATH  Google Scholar 

  19. Bera, B.K., Majhi, S., Ghosh, D., Perc, M.: Chimera states: effects of different coupling topologies. Europhys. Lett. 118(1), 10001 (2017)

    Article  Google Scholar 

  20. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2018)

    Article  Google Scholar 

  21. Yu, Y.G., Liu, F., Wang, W., Lee, T.S.: Optimal synchrony state for maximal information transmission. Neuroreport 15(10), 1605–1610 (2004)

    Article  Google Scholar 

  22. Reig, R., Mattia, M., Compte, A., Belmonte, C., Sánchez-Vives, M.V.: Temperature modulation of slow and fast cortical rhythms. J. Neurophysiol. 103(3), 1253–1261 (2009)

    Article  Google Scholar 

  23. Hedrick, T., Waters, J.: Spiking patterns of neocortical L5 pyramidal neurons in vitro change with temperature. Front. Cell. Neurosci. 5(3), 1 (2011)

    Google Scholar 

  24. Andersen, P., Moser, E.I.: Brain temperature and hippocampal function. Hippocampus 5(6), 491–498 (1995)

    Article  Google Scholar 

  25. Jerison, H.J.: Paleoneurology and the evolution of mind. Sci. Am. 234(1), 90–101 (1976)

    Article  Google Scholar 

  26. Hamilton, C.L., Ciaccia, P.J.: Hypothalamus, temperature regulation, and feeding in the rat. Am. J. Physiol. Leg. Content 221(3), 800–807 (1971)

    Article  Google Scholar 

  27. Zhao, Z.D., Yang, W.Z., Gao, C.C., Fu, X., Zhang, W., Zhou, Q., Chen, W.P., Ni, X.Y., Lin, J.K., Yang, J.: A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. 114(8), 2042–2047 (2017)

    Article  Google Scholar 

  28. Wang, Y.Y., Qin, J., Han, Y., Cai, J., Xing, G.G.: Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res. 1417(15), 87–102 (2011)

    Article  Google Scholar 

  29. Simon, H.B.: Hyperthermia. N. Engl. J. Med. 329(7), 483 (1993)

    Article  Google Scholar 

  30. Erecinska, M., Thoresen, M., Silver, I.A.: Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab. 23(5), 513–530 (2003)

    Article  Google Scholar 

  31. Orlowski, J.P., Erenberg, G., Lueders, H., Cruse, R.P.: Hypothermia and barbiturate coma for refractory status epilepticus. Crit. Care Med. 12(4), 367–372 (1984)

    Article  Google Scholar 

  32. Arendt, T., Stieler, J., Holzer, M.: Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer’s disease pathology. J. Neural Transm. (Vienna) 122(4), 531–539 (2015)

    Article  Google Scholar 

  33. Kim, J., Connors, B.: High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front. Cell. Neurosci. 6(10), 27 (2012)

    Google Scholar 

  34. Ye, M.Y., Yang, J., Tian, C.P., Zhu, Q.Y., Yin, L.P., Jiang, S., Yang, M.P., Shu, Y.S.: Differential roles of NaV 1.2 and NaV 1.6 in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures. Sci. Rep. 8(1), 753 (2018)

    Article  Google Scholar 

  35. Yu, Y.G., Hill, A.P., Mccormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8(4), e1002456 (2012)

    Article  Google Scholar 

  36. Thompson, S.M., Masukawa, L.M., Prince, D.A.: Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J. Neurosci. 5(3), 817–824 (1985)

    Article  Google Scholar 

  37. Volgushev, M., Kudryashov, I., Chistiakova, M., Mukovski, M., Niesmann, J., Eysel, U.T.: Probability of transmitter release at neocortical synapses at different temperatures. J. Neurophysiol. 92(1), 212–220 (2004)

    Article  Google Scholar 

  38. Dinkelacker, V., Voets, T., Neher, E., Moser, T.: The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37 C. J. Neurosci. 20(22), 8377–8383 (2000)

    Article  Google Scholar 

  39. Hardingham, N.R., Larkman, A.U.: The reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent. J. Physiol. 507(1), 249–256 (1998)

    Article  Google Scholar 

  40. Yu, Y.G., Shu, Y.S., McCormick, D.A.: Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28(29), 7260–7272 (2008)

    Article  Google Scholar 

  41. McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4), 1384–1400 (1992)

    Article  Google Scholar 

  42. Strong, S.P., Koberle, R., Steveninck, R.R.D.R.V., Bialek, W.: Entropy and information in neural spike trains. Phys. Rev. Lett. 80(1), 197–200 (1996)

    Article  Google Scholar 

  43. Haider, B., Duque, A., Hasenstaub, A.R., Mccormick, D.A.: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26(17), 4535 (2006)

    Article  Google Scholar 

  44. Isaacson, J.S., Scanziani, M.: How inhibition shapes cortical activity. Neuron 72(2), 231–243 (2011)

    Article  Google Scholar 

  45. Priebe, N.J., Ferster, D.: Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1), 133–145 (2005)

    Article  Google Scholar 

  46. Bennett, C., Arroyo, S., Hestrin, S.: Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80(2), 350–357 (2013)

    Article  Google Scholar 

  47. Wang, L.F., Jia, F., Liu, X.Z., Song, Y., Yu, L.C.: Temperature effects on information capacity and energy efficiency of Hodgkin–Huxley neuron. Chin. Phys. Lett. 32(10), 108701 (2015)

    Article  Google Scholar 

  48. Gewaltig, M.O., Diesmann, M., Aertsen, A.: Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw. 14(6–7), 657–673 (2001)

    Article  Google Scholar 

  49. Reyes, A.D.: Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6(6), 593–599 (2003)

    Article  Google Scholar 

  50. Haider, B., Häusser, M., Carandini, M.: Inhibition dominates sensory responses in the awake cortex. Nature 493(7430), 97 (2013)

    Article  Google Scholar 

  51. Mittmann, W., Koch, U., Häusser, M.: Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. 563(2), 369–378 (2005)

    Article  Google Scholar 

  52. Higley, M.J., Contreras, D.: Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26(2), 448–457 (2006)

    Article  Google Scholar 

  53. Schreiber, S., Fellous, J.-M., Tiesinga, P., Sejnowski, T.J.: Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. J. Neurophysiol. 91(1), 194–205 (2004)

    Article  Google Scholar 

  54. Dube, C.M., Brewster, A.L., Baram, T.Z.: Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev. 31(5), 366–371 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

YY thanks for the support from the National Natural Science Foundation of China (81761128011, 31571070), the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, the Shanghai Science and Technology Committee support (16410722600), and the program for the Professor of Special Appointment (Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Contributions

YY supervised the research, YY and XF designed the research, XF and YY performed the experimental study and data analysis, and XF and YY wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuguo Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Human and animal statement

The conducts and procedures involving animal experiments in this study were approved by the Animal Ethics Committee of Fudan University School of Life Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Yu, Y. Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons. Nonlinear Dyn 98, 215–231 (2019). https://doi.org/10.1007/s11071-019-05184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05184-2

Keywords

Navigation