Skip to main content
Log in

Origin and structures of solar eruptions I: Magnetic flux rope

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope (MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari T, Canou A, Aly J J. 2014. Characterizing and predicting the magnetic environment leading to solar eruptions. Nature, 514: 465–469

    Article  Google Scholar 

  • Amari T, Luciani J F, Mikic Z, Linker J. 1999. Three-dimensional solutions of magnetohydrodynamic equationsfor prominence magnetic support: Twisted magnetic flux rope. Astrophys J, 518: L57–L60

    Article  Google Scholar 

  • Amari T, Luciani J F, Mikic Z, Linker J. 2000. A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys J, 529: L49–L52

    Article  Google Scholar 

  • Amari T, Luciani J F, Aly J J, Mikic Z, Linker J. 2003a. Coronal mass ejection: initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys J, 585: 1073–1086

    Google Scholar 

  • Amari T, Luciani J F, Aly J J, Mikic Z, Linker J. 2003b. Coronal mass ejection: initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys J, 595: 1231–1250

    Article  Google Scholar 

  • Amari T, Aly J J, Mikic Z, Linker J. 2010. Coronal mass ejection initiation: On the nature of the flux cancellation model. Astrophys J, 717: L26–L30

    Article  Google Scholar 

  • Amari T, Aly J J, Luciani J F, Mikic Z, Linker J. 2011. Coronal mass ejection initiation by converging photospheric flows: Toward a realistic model. Astrophys J, 742: L27

    Article  Google Scholar 

  • Antiochos S K, Dahlburg R B, Klimchuk J A. 1994. The magnetic field of solar prominences. Astrophys J, 420: L41–L44

    Article  Google Scholar 

  • Antiochos S K, DeVore C R, Klimchuk J A. 1999. A model for solar coronal mass ejections. Astrophys J, 510: 485–493

    Article  Google Scholar 

  • Archontis V, Hood A W. 2009. Formation of Ellerman bombs due to 3D flux emergence. Astron Astrophys, 508: 1469–1483

    Article  Google Scholar 

  • Archontis V, Török T. 2008. Eruption of magnetic flux ropes during flux emergence. Astron Astrophys, 492: L35–L38

    Article  Google Scholar 

  • Archontis V, Hood A W, Savcheva A, Golub L, Deluca E. 2009. On the structure and evolution of complexity in sigmoids: A flux emergence model. Astrophys J, 691: 1276–1291

    Article  Google Scholar 

  • Aulanier G, Schmieder B. 2002. The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astron Astrophys, 386: 1106–1122

    Article  Google Scholar 

  • Aulanier G, DeVore C R, Antiochos S K. 2006. Solar prominence merging. Astrophys J, 646: 1349–1357

    Article  Google Scholar 

  • Aulanier G, Janvier M, Schmieder B. 2012. The standard flare model in three dimensions. Astron Astrophys, 543: A110

    Article  Google Scholar 

  • Aulanier G, Démoulin P, van Driel-Gesztelyi L, Mein P, Deforest C. 1998. 3-D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted flux-tube. Astron Astrophys, 335: 309–332

    Google Scholar 

  • Aulanier G, Démoulin P, Mein N, van Driel-Gesztelyi L, Mein P, Schmieder B. 1999. 3-D magnetic configurations supporting prominences. III. Evolution of fine structures observed in a filament channel. Astron Astrophys, 342: 867–880

    Google Scholar 

  • Aulanier G, DeLuca E E, Antiochos S K, McMullen R A, Golub L. 2000. The topology and evolution of the bastille day flare. Astrophys J, 540: 1126–1142

    Article  Google Scholar 

  • Aulanier G, Török T, Démoulin P, DeLuca E E. 2010. Formation of torusunstable flux ropes and electric currents in erupting sigmoids. Astrophys J, 708: 314–333

    Article  Google Scholar 

  • Bain H M, Krucker S, Glesener L, Lin R P. 2012. Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys J, 750: 44

    Article  Google Scholar 

  • Bak-Steslicka U, Gibson S E, Fan Y, Bethge C, Forland B, Rachmeler L A. 2013. The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophys J, 770: L28

    Article  Google Scholar 

  • Bernasconi P N, Rust D M, Georgoulis M K, Labonte B J. 2002. Moving dipolar features in an emerging flux region. Sol Phys, 209: 119–139

    Article  Google Scholar 

  • Bobra M G, Ilonidis S. 2016. Predicting coronal mass ejections using machine learning methods. Astrophys J, 821: 127

    Article  Google Scholar 

  • Bobra M G, Sun X, Hoeksema J T, Turmon M, Liu Y, Hayashi K, Barnes G, Leka K D. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs-Space-weather HMI Active Region Patches. Sol Phys, 289: 3549–3578

    Article  Google Scholar 

  • Burlaga L F. 1988. Magnetic clouds and force-free fields with constant alpha. J Geophys Res, 93: 7217–7224

    Article  Google Scholar 

  • Byrne J P, Maloney S A, McAteer R T J, Refojo J M, Gallagher P T. 2010. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat Commun, 1: 1–8

    Article  Google Scholar 

  • Canfield R C, Hudson H S, McKenzie D E. 1999. Sigmoidal morphology and eruptive solar activity. Geophys Res Lett, 26: 627–630

    Article  Google Scholar 

  • Canou A, Amari T. 2010. A twisted flux rope as the magnetic structure of a filament in active region 10953 observed by HINODE. Astrophys J, 715: 1566–1574

    Article  Google Scholar 

  • Cao W, Gorceix N, Coulter R, Ahn K, Rimmele T R, Goode P R. 2010. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron Nachr, 331: 636–639

    Article  Google Scholar 

  • Carley E P, Long D M, Byrne J P, Zucca P, Shaun Bloomfield D, McCauley J, Gallagher P T. 2013. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat Phys, 9: 811–816

    Article  Google Scholar 

  • Carmichael H. 1964. A process for flares. NASA Spec Publ, 50: 451

    Google Scholar 

  • Chen B, Bastian T S, Gary D E. 2014a. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection. Astrophys J, 794: 149

    Article  Google Scholar 

  • Chen H, Zhang J, Cheng X, Ma S, Yang S, Li T. 2014b. Direct observations of tether-cutting reconnection during a major solar event from 2014 February 24 to 25. Astrophys J, 797: L15

    Article  Google Scholar 

  • Chen H, Zhang J, Ma S, Yang S, Li L, Huang X, Xiao J. 2015. Confined flares in solar active region 12192 from 2014 October 18 to 29. Astrophys J, 808: L24

    Article  Google Scholar 

  • Chen H, Zhang J, Li L, Ma S. 2016a. Tether-cutting reconnection between two solar filaments triggering outflows and a coronal mass ejection. Astrophys J, 818: L27

    Article  Google Scholar 

  • Chen J. 1996. Theory of prominence eruption and propagation: Interplanetary consequences. J Geophys Res, 101: 27499–27519

    Article  Google Scholar 

  • Chen P F. 2011. Coronal mass ejections: Models and their observational basis. Living Rev Sol Phys, 8: 1

    Article  Google Scholar 

  • Chen P F, Shibata K. 2000. An emerging flux trigger mechanism for coronal mass ejections. Astrophys J, 545: 524–531

    Article  Google Scholar 

  • Chen P F, Harra L K, Fang C. 2014c. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counterstreamings. Astrophys J, 784: 50

    Article  Google Scholar 

  • Chen Y, Du G, Feng L, Feng S, Kong X, Guo F, Wang B, Li G. 2014d. A solar type ii radio burst from coronal mass ejection-coronal ray interaction: simultaneous radio and extreme ultraviolet imaging. Astrophys J, 787: 59

    Article  Google Scholar 

  • Chen Y, Du G, Zhao D, Wu Z, Liu W, Wang B, Ruan G, Feng S, Song H. 2016b. Imaging a magnetic-breakout solar eruption. Astrophys J, 820: L37

    Article  Google Scholar 

  • Cheng X, Ding M D. 2016. The characteristics of the footpoints of solar magnetic flux ropes during eruptions. Astrophys J Suppl Ser, 225: 16

    Article  Google Scholar 

  • Cheng X, Ding M D, Fang C. 2015a. Imaging and spectroscopic diagnostics on the formation of two magnetic flux ropes revealed by SDO/AIA and IRIS. Astrophys J, 804: 82

    Article  Google Scholar 

  • Cheng X, Ding M D, Zhang J. 2010. A study of the build-up, initiation, and acceleration of 2008 April 26 coronal mass ejection observed by STEREO. Astrophys J, 712: 1302–1310

    Article  Google Scholar 

  • Cheng X, Zhang J, Ding M D, Guo Y, Su J T. 2011a. A comparative study of confined and eruptive flares in NOAA AR 10720. Astrophys J, 732: 87

    Article  Google Scholar 

  • Cheng X, Zhang J, Liu Y, Ding M D. 2011b. Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys J, 732: L25

    Article  Google Scholar 

  • Cheng X, Zhang J, Saar S H, Ding M D. 2012. Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys J, 761: 62

    Article  Google Scholar 

  • Cheng X, Zhang J, Ding M D, Olmedo O, Sun X D, Guo Y, Liu Y. 2013a. Investigating two successive flux rope eruptions in a solar active region. Astrophys J, 769: L25

    Article  Google Scholar 

  • Cheng X, Zhang J, Ding M D, Liu Y, Poomvises W. 2013b. The driver of coronal mass ejections in the low corona: A flux rope. Astrophys J, 763: 43

    Article  Google Scholar 

  • Cheng X, Ding M D, Zhang J, Sun X D, Guo Y, Wang Y M, Kliem B, Deng Y Y. 2014a. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys J, 789: 93

    Article  Google Scholar 

  • Cheng X, Ding M D, Zhang J, Srivastava A K, Guo Y, Chen P F, Sun J Q. 2014b. On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys J, 789: L35

    Article  Google Scholar 

  • Cheng X, Ding M D, Guo Y, Zhang J, Vourlidas A, Liu Y D, Olmedo O, Sun J Q, Li C. 2014c. Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys J, 780: 28

    Article  Google Scholar 

  • Cheng X, Hao Q, Ding M D, Liu K, Chen P F, Fang C, Liu Y D. 2015b. A two-ribbon white-light flare associated with a failed solar eruption observed by ONSET, SDO, and IRIS. Astrophys J, 809: 46

    Article  Google Scholar 

  • Cheung M C M, DeRosa M L. 2012. A method for data-driven simulations of evolving solar active regions. Astrophys J, 757: 147

    Article  Google Scholar 

  • Cheung M C M, Isobe H. 2014. Flux Emergence (Theory). Living Rev Solar Phys, 11: 3

    Article  Google Scholar 

  • Chintzoglou G, Patsourakos S, Vourlidas A. 2015. Formation of magnetic flux ropes during confined flaring well before the onset of a pair of major coronal mass ejections. Astrophys J, 809: 34

    Article  Google Scholar 

  • Ciaravella A, Raymond J C. 2008. The current sheet associated with the 2003 November 4 coronal mass ejection: Density, temperature, thickness, and line width. Astrophys J, 686: 1372–1382

    Article  Google Scholar 

  • Cunha-Silva R D, Fernandes F C R, Selhorst C L. 2015. Solar type II radio bursts associated with CME expansions as shown by EUV waves. Astron Astrophys, 578: A38

    Article  Google Scholar 

  • De Pontieu B, Title A M, Lemen J R, Kushner G D, Akin D J, Allard B, Berger T, Boerner P, Cheung M, Chou C, Drake J F, Duncan D W, Freeland S, Heyman G F, Hoffman C, Hurlburt N E, Lindgren R W, Mathur D, Rehse R, Sabolish D, Seguin R, Schrijver C J, Tarbell T D, Wülser J P, Wolfson C J, Yanari C, Mudge J, Nguyen-Phuc N, Timmons R, van Bezooijen R, Weingrod I, Brookner R, Butcher G, Dougherty B, Eder J, Knagenhjelm V, Larsen S, Mansir D, Phan L, Boyle P, Cheimets P N, DeLuca E E, Golub L, Gates R, Hertz E, McKillop S, Park S, Perry T, Podgorski W A, Reeves K, Saar S, Testa P, Tian H, Weber M, Dunn C, Eccles S, Jaeggli S A, Kankelborg C C, Mashburn K, Pust N, Springer L, Carvalho R, Kleint L, Marmie J, Mazmanian E, Pereira T M D, Sawyer S, Strong J, Worden S P, Carlsson M, Hansteen V H, Leenaarts J, Wiesmann M, Aloise J, Chu K C, Bush R I, Scherrer P H, Brekke P, Martinez-Sykora J, Lites B W, McIntosh S W, Uitenbroek H, Okamoto T J, Gummin M A, Auker G, Jerram P, Pool P, Waltham N. 2014. The interface region imaging spectrograph (IRIS). Sol Phys, 289: 2733–2779

    Article  Google Scholar 

  • Démoulin P, Aulanier G. 2010. Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys J, 718: 1388–1399

    Article  Google Scholar 

  • Démoulin P, Vourlidas A, Pick M, Bouteille A. 2012. Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys J, 750: 147

    Article  Google Scholar 

  • Deng Y, Lin Y, Schmieder B, Engvold O Ø. 2002. Filament activation and magnetic reconnection. Sol Phys, 209: 153–170

    Article  Google Scholar 

  • Dere K P, Brueckner G E, Howard R A, Michels D J, Delaboudiniere J P. 1999. LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys J, 516: 465–474

    Article  Google Scholar 

  • Dove J B, Gibson S E, Rachmeler L A, Tomczyk S, Judge P. 2011. A ring of polarized light: Evidence for twisted coronal magnetism in cavities. Astrophys J, 731: L1

    Article  Google Scholar 

  • Dudík J, Janvier M, Aulanier G, Del Zanna G, Karlický M, Mason H E, Schmieder B. 2014. Slipping magnetic reconnection during an x-class solar flare observed by SDO/AIA. Astrophys J, 784: 144

    Article  Google Scholar 

  • Falconer D A, Moore R L, Gary G A. 2008. Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys J, 689: 1433–1442

    Article  Google Scholar 

  • Fan Y. 2001. The emergence of a twisted O-tube into the solar atmosphere. Astrophys J, 554: L111–L114

    Article  Google Scholar 

  • Fan Y. 2009. The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys J, 697: 1529–1542

    Article  Google Scholar 

  • Fan Y. 2012. Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: Hot central voids in coronal cavities. Astrophys J, 758: 60

    Article  Google Scholar 

  • Feng L, Wiegelmann T, Su Y, Inhester B, Li Y P, Sun X D, Gan W Q. 2013. Magnetic energy partition between the coronal mass ejection and flare from ar 11283. Astrophys J, 765: 37

    Article  Google Scholar 

  • Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Liu Y. 2012. Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II radio burst. Astrophys J, 753: 21

    Article  Google Scholar 

  • Fisher G H, Abbett W P, Bercik D J, Kazachenko M D, Lynch B J, Welsch B T, Hoeksema J T, Hayashi K, Liu Y, Norton A A, Dalda A S, Sun X, DeRosa M L, Cheung M C M. 2015. The coronal global evolutionary model: Using HMI vector magnetogram and doppler data to model the buildup of free magnetic energy in the solar corona. Space Weather, 13: 369–373

    Article  Google Scholar 

  • Forbes T G, Isenberg P A. 1991. A catastrophe mechanism for coronal mass ejections. Astrophys J, 373: 294–307

    Article  Google Scholar 

  • Forbes T G, Priest E R. 1995. Photospheric magnetic field evolution and eruptive flares. Astrophys J, 446: 377

    Article  Google Scholar 

  • Forbes T G, Linker J A, Chen J, Cid C, Kóta J, Lee M A, Mann G, Mikic Z, Potgieter M S, Schmidt J M, Siscoe G L, Vainio R, Antiochos S K, Riley P. 2006. CME theory and models. Space Sci Rev, 123: 251–302

    Article  Google Scholar 

  • Gary G A, Moore R L. 2004. Eruption of a multiple-turn helical magnetic flux tube in a large flare: Evidence for external and internal reconnection that fits the breakout model of solar magnetic eruptions. Astrophys J, 611: 545–556

    Article  Google Scholar 

  • Gibson S E, Fletcher L, Del Zanna G, Pike C D, Mason H E, Mandrini C H, Demoulin P, Gilbert H, Burkepile J, Holzer T, Alexander D, Liu Y, Nitta N, Qiu J, Schmieder B, Thompson B J. 2002. The structure and evolution of a sigmoidal active region. Astrophys J, 574: 1021–1038

    Article  Google Scholar 

  • Gibson S E, Fan Y, Mandrini C, Fisher G, Demoulin P. 2004. Observational consequences of a magnetic flux rope emerging into the corona. Astrophys J, 617: 600–613

    Article  Google Scholar 

  • Gibson S E, Foster D, Burkepile J, de Toma G, Stanger A. 2006. The calm before the storm: The link between quiescent cavities and coronal mass ejections. Astrophys J, 641: 590–605

    Article  Google Scholar 

  • Gibson S E, Fan Y, Török T, Kliem B. 2007. The evolving sigmoid: Evidence for magnetic flux ropes in the corona before, during, and after CMEs. Space Sci Rev, 124: 131–144

    Article  Google Scholar 

  • Gilbert H R, Alexander D, Liu R. 2007. Filament kinking and its implications for eruption and re-formation. Sol Phys, 245: 287–309

    Article  Google Scholar 

  • Gopalswamy N, Thompson W T, Davila J M, Kaiser M L, Yashiro S, Mäkelä P, Michalek G, Bougeret J L, Howard R A. 2009. Relation between type II bursts and CMEs inferred from STEREO observations. Sol Phys, 259: 227–254

    Article  Google Scholar 

  • Gopalswamy N, Yashiro S, Akiyama S, Xie H. 2017. Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Sol Phys, 292: 65

    Article  Google Scholar 

  • Gosling J T. 1993. The solar flare myth. J Geophys Res, 98: 18937–18949

    Article  Google Scholar 

  • Grechnev V V, Uralov A M, Kuzmenko I V, Kochanov A A, Chertok I M, Kalashnikov S S. 2015. Responsibility of a Filament Eruption for the Initiation of a Flare, CME, and Blast Wave, and its Possible Transformation into a Bow Shock. Sol Phys, 290: 129–158

    Article  Google Scholar 

  • Grechnev V V, Uralov A M, Kochanov A A, Kuzmenko I V, Prosovetsky D V, Egorov Y I, Fainshtein V G, Kashapova L K. 2016. A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Sol Phys, 291: 1173–1208

    Article  Google Scholar 

  • Green L M, Kliem B. 2009. Flux rope formation preceding coronal mass ejection onset. Astrophys J, 700: L83–L87

    Article  Google Scholar 

  • Green L M, Kliem B, Wallace A J. 2011. Photospheric flux cancellation and associated flux rope formation and eruption. Astron Astrophys, 526: A2

    Article  Google Scholar 

  • Green L M, Kliem B, Török T, van Driel-Gesztelyi L, Attrill G D R. 2007. Transient coronal sigmoids and rotating erupting flux ropes. Sol Phys, 246: 365–391

    Article  Google Scholar 

  • Guo Y, Cheng X, Ding M D. 2017. Origin and Structures of Solar Eruptions II: Magnetic Modelling. Sci China Earth Sci, 60, doi: 10.1007/s11430-017-9081-x

  • Guo Y, Schmieder B, Démoulin P, Wiegelmann T, Aulanier G, Török T, Bommier V. 2010a. Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys J, 714: 343–354

    Article  Google Scholar 

  • Guo Y, Ding M D, Schmieder B, Li H, Török T, Wiegelmann T. 2010b. Driving mechanism and onset condition of a confined eruption. Astrophys J, 725: L38–L42

    Article  Google Scholar 

  • Guo Y, Ding M D, Cheng X, Zhao J, Pariat E. 2013. Twist accumulation and topology structure of a solar magnetic flux rope. Astrophys J, 779: 157

    Article  Google Scholar 

  • Harra L K, Williams D R, Wallace A J, Magara T, Hara H, Tsuneta S, Sterling A C, Doschek G A. 2009. Coronal nonthermal velocity following helicity injection before an X-class flare. Astrophys J, 691: L99–L102

    Article  Google Scholar 

  • Harra L K, Matthews S, Culhane J L, Cheung M C M, Kontar E P, Hara H. 2013. The location of non-thermal velocity in the early phases of large flares—Revealing pre-eruption flux ropes. Astrophys J, 774: 122

    Article  Google Scholar 

  • Hassanin A, Kliem B. 2016. Helical kink instability in a confined solar eruption. Astrophys J, 832: 106

    Article  Google Scholar 

  • Hess P, Zhang J. 2015. Predicting CME ejecta and sheath front arrival at L1 with a data-constrained physical model. Astrophys J, 812: 144

    Article  Google Scholar 

  • Hirayama T. 1974. Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys, 34: 323

    Google Scholar 

  • Hirayama T. 1985. Modern observations of solar prominences. Sol Phys, 100: 415–434

    Article  Google Scholar 

  • Hu H, Liu Y D, Wang R, Möstl C, Yang Z. 2016. Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness. Astrophys J, 829: 97

    Article  Google Scholar 

  • Hu Q, Qiu J, Dasgupta B, Khare A, Webb G M. 2014. Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys J, 793: 53

    Article  Google Scholar 

  • Hudson H S, Lemen J R, St. Cyr O C, Sterling A C, Webb D F. 1998. X-ray coronal changes during Halo CMEs. Geophys Res Lett, 25: 2481–2484

    Article  Google Scholar 

  • Illing R M E, Hundhausen A J. 1983. Possible observation of a discon-nected magnetic structure in a coronal transient. J Geophys Res, 88: 10210–10214

    Article  Google Scholar 

  • Innes D E, McKenzie D E, Wang T. 2003. SUMER spectral observations of post-flare supra-arcade inflows. Sol Phys, 217: 247–265

    Article  Google Scholar 

  • Innes D E, Inhester B, Axford W I, Wilhelm K. 1997. Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature, 386: 811–813

    Article  Google Scholar 

  • Inoue S, Hayashi K, Shiota D, Magara T, Choe G S. 2013. Magnetic structure producing X-and M-class solar flares in solar active region 11158. Astrophys J, 770: 79

    Article  Google Scholar 

  • Inoue S, Hayashi K, Magara T, Choe G S, Park Y D. 2014. Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. I. Comparison with the observations. Astrophys J, 788: 182

    Article  Google Scholar 

  • Isenberg P A, Forbes T G, Demoulin P. 1993. Catastrophic evolution of a force-free flux rope: A model for eruptive flares. Astrophys J, 417: 368

    Article  Google Scholar 

  • Isobe H, Tripathi D, Archontis V. 2007. Ellerman bombs and jets associated with resistive flux emergence. Astrophys J, 657: L53–L56

    Article  Google Scholar 

  • Janvier M, Aulanier G, Pariat E, Démoulin P. 2013. The standard flare model in three dimensions. Astron Astrophys, 555: A77

    Article  Google Scholar 

  • Janvier M, Aulanier G, Bommier V, Schmieder B, Démoulin P, Pariat E. 2014. Electric currents in flare ribbons: Observations and three-dimensional standard model. Astrophys J, 788: 60

    Article  Google Scholar 

  • Janvier M, Savcheva A, Pariat E, Tassev S, Millholland S, Bommier V, McCauley P, McKillop S, Dougan F. 2016. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare. Astron Astrophys, 591: A141

    Article  Google Scholar 

  • Ji H, Wang H, Schmahl E J, Moon Y J, Jiang Y. 2003. Observations of the failed eruption of a filament. Astrophys J, 595: L135–L138

    Article  Google Scholar 

  • Jiang C, Feng X. 2012. A new implementation of the magnetohydrodynamics-relaxation method for nonlinear force-free field extrapolation in the solar corona. Astrophys J, 749: 135

    Article  Google Scholar 

  • Jiang C W, Wu S T, Feng X S, Hu Q. 2016a. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament. Res Astron Astrophys, 16: 018

    Article  Google Scholar 

  • Jiang C, Feng X, Wu S T, Hu Q. 2013. Magnetohydrodynamic simulation of a sigmoid eruption of active region 11283. Astrophys J, 771: L30

    Article  Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2014a. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling. Astrophys J, 780: 55

    Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2014b. Nonlinear force-free field extrapolation of a coronal magnetic flux rope supporting a large-scale solar filament from a photospheric vector magnetogram. Astrophys J, 786: L16

    Article  Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2016b. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption. Nat Commun, 7: 11522

    Article  Google Scholar 

  • Jiang C, Wu S T, Yurchyshyn V, Wang H, Feng X, Hu Q. 2016c. How did a major confined flare occur in super solar active region 12192? Astrophys J, 828: 62

    Article  Google Scholar 

  • Joshi N C, Magara T, Inoue S. 2014a. Formation of a compound flux rope by the merging of two filament channels, the associated dynamics, and its stability. Astrophys J, 795: 4

    Article  Google Scholar 

  • Joshi N C, Srivastava A K, Filippov B, Kayshap P, Uddin W, Chandra R, Prasad Choudhary D, Dwivedi B N. 2014b. Confined partial filament eruption and its reformation within a stable magnetic flux rope. Astrophys J, 787: 11

    Article  Google Scholar 

  • Joshi N C, Liu C, Sun X, Wang H, Magara T, Moon Y J. 2015. The role of erupting sigmoid in triggering a flare with parallel and large-scale quasicircular ribbons. Astrophys J, 812: 50

    Article  Google Scholar 

  • Kahler S W. 1992. Solar flares and coronal mass ejections. Annu Rev Astron Astrophys, 30: 113–141

    Article  Google Scholar 

  • Kaiser M L, Kucera T A, Davila J M, St. Cyr O C, Guhathakurta M, Christian E. 2008. The STEREO mission: An introduction. Space Sci Rev, 136: 5–16

    Article  Google Scholar 

  • Karna N, Zhang J, Pesnell W D, Hess Webber S A. 2015. Study of the 3d geometric structure and temperature of a coronal cavity using the limb synoptic map method. Astrophys J, 810: 124

    Article  Google Scholar 

  • Karpen J T, Antiochos S K, DeVore C R. 2012. The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys J, 760: 81

    Article  Google Scholar 

  • Kliem B, Török T. 2006. Torus instability. Phys Rev Lett, 96: 255002

    Article  Google Scholar 

  • Kliem B, Titov V S, Török T. 2004. Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron Astrophys, 413: L23–L26

    Article  Google Scholar 

  • Kliem B, Linton M G, Török T, Karlický M. 2010. Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source II. Numerical modeling. Sol Phys, 266: 91–107

    Google Scholar 

  • Kliem B, Su Y N, van Ballegooijen A A, DeLuca E E. 2013. Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys J, 779: 129

    Article  Google Scholar 

  • Kliem B, Lin J, Forbes T G, Priest E R, Török T. 2014a. Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope. Astrophys J, 789: 46

    Article  Google Scholar 

  • Kliem B, Török T, Titov V S, Lionello R, Linker J A, Liu R, Liu C, Wang H. 2014b. Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. Astrophys J, 792: 107

    Article  Google Scholar 

  • Kopp R A, Pneuman G W. 1976. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys, 50: 85–89

    Article  Google Scholar 

  • Kouloumvakos A, Patsourakos S, Hillaris A, Vourlidas A, Preka-Papadema P, Moussas X, Caroubalos C, Tsitsipis P, Kontogeorgos A. 2014. CME expansion as the driver of metric type II shock emission as revealed by self-consistent analysis of high-cadence EUV images and radio spectrograms. Sol Phys, 289: 2123–2139

    Article  Google Scholar 

  • Kumar P, Yurchyshyn V, Wang H, Cho K S. 2015. Formation and eruption of a small flux rope in the chromosphere observed by NST, IRIS, and SDO. Astrophys J, 809: 83

    Article  Google Scholar 

  • Kumar P, Yurchyshyn V, Cho K S, Wang H. 2017. Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere. ArXiv e-prints

    Google Scholar 

  • Kuperus M, Raadu M A. 1974. The support of prominences formed in neutral sheets. Astron Astrophys, 31: 189–193

    Google Scholar 

  • Leake J E, Linton M G, Antiochos S K. 2014. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys J, 787: 46

    Google Scholar 

  • Leake J E, Linton M G, Török T. 2013. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys J, 778: 99

    Google Scholar 

  • Leka K D, Barnes G. 2003a. Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys J, 595: 1277–1295

    Google Scholar 

  • Leka K D, Barnes G. 2003b. Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys J, 595: 1296–1306

    Article  Google Scholar 

  • Lemen J R, Title A M, Akin D J, Boerner P F, Chou C, Drake J F, Duncan D W, Edwards C G, Friedlaender F M, Heyman G F, Hurlburt N E, Katz N L, Kushner G D, Levay M, Lindgren R W, Mathur D P, McFeaters E L, Mitchell S, Rehse R A, Schrijver C J, Springer L A, Stern R A, Tarbell T D, Wuelser J P, Wolfson C J, Yanari C, Bookbinder J A, Cheimets P N, Caldwell D, Deluca E E, Gates R, Golub L, Park S, Podgorski W A, Bush R I, Scherrer P H, Gummin M A, Smith P, Auker G, Jerram P, Pool P, Soufli R, Windt D L, Beardsley S, Clapp M, Lang J, Waltham N. 2012. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys, 275: 17–40

    Article  Google Scholar 

  • Lepping R P, Burlaga L F, Jones J A. 1990. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J Geophys Res, 95: 11957–11965

  • Levens P J, Schmieder B, López Ariste A, Labrosse N, Dalmasse K, Gelly B. 2016. Magnetic field in atypical prominence structures: Bubble, tornado, and eruption. Astrophys J, 826: 164

    Article  Google Scholar 

  • Li L P, Zhang J. 2013a. Eruptions of two flux ropes observed by SDO and STEREO. Astron Astrophys, 552: L11

    Article  Google Scholar 

  • Li L P, Peter H, Chen F, Zhang J. 2014. Conversion from mutual helicity to self-helicity observed with IRIS. Astron Astrophys, 570: A93

    Article  Google Scholar 

  • Li L P, Zhang J, Su J T, Liu Y. 2016a. Oscillation of current sheets in the wake of a flux rope eruption observed by the solar dynamics observatory. Astrophys J, 829: L33

    Article  Google Scholar 

  • Li T, Zhang J. 2013b. Fine-scale structures of flux ropes tracked by erupting material. Astrophys J, 770: L25

    Article  Google Scholar 

  • Li T, Zhang J. 2013c. Homologous flux ropes observed by the solar dynamics observatory atmospheric imaging assembly. Astrophys J, 778: L29

    Article  Google Scholar 

  • Li T, Zhang J. 2015. High-resolution observations of a flux rope with the interface region imaging spectrograph. Sol Phys, 290: 2857–2870

    Article  Google Scholar 

  • Li X, Morgan H, Leonard D, Jeska L. 2012. A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. Astrophys J, 752: L22

    Article  Google Scholar 

  • Li Y, Qiu J, Longcope D W, Ding M D, Yang K. 2016b. Observations of an X-shaped ribbon flare in the Sun and its three-dimensional magnetic reconnection. Astrophys J, 823: L13

    Article  Google Scholar 

  • Li Z, Fang C, Guo Y, Chen P F, Xu Z, Cao W D. 2015. Diagnostics of Ellerman bombs with high-resolution spectral data. Res Astron Astrophys, 15: 1513–1524

    Article  Google Scholar 

  • Lin H, Penn M J, Tomczyk S. 2000. A new precise measurement of the coronal magnetic field strength. Astrophys J, 541: L83–L86

    Article  Google Scholar 

  • Lin J. 2001. Theoretical mechanisms for solar eruptions. Doctoral Dissertation. New Hampshire: University of New Hampshire

    Google Scholar 

  • Lin J, Forbes T G. 2000. Effects of reconnection on the coronal mass ejection process. J Geophys Res, 105: 2375–2392

    Article  Google Scholar 

  • Lin J, van Ballegooijen A A. 2002. Catastrophic and noncatastrophic mechanisms for coronal mass ejections. Astrophys J, 576: 485–492

    Article  Google Scholar 

  • Lin J, Raymond J C, van Ballegooijen A A. 2004. The role of magnetic reconnection in the observable features of solar eruptions. Astrophys J, 602: 422–435

    Article  Google Scholar 

  • Lin J, Ko Y K, Sui L, Raymond J C, Stenborg G A, Jiang Y, Zhao S, Mancuso S. 2005. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys J, 622: 1251–1264

    Article  Google Scholar 

  • Lin J, Li J, Forbes T G, Ko Y K, Raymond J C, Vourlidas A. 2007. Features and properties of coronal mass ejection/flare current sheets. Astrophys J, 658: L123–L126

    Article  Google Scholar 

  • Lin J, Murphy N A, Shen C, Raymond J C, Reeves K K, Zhong J, Wu N, Li Y. 2015. Review on current sheets in CME development: Theories and observations. Space Sci Rev, 194: 237–302

    Article  Google Scholar 

  • Lites B W. 2005. Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. Astrophys J, 622: 1275–1291

    Article  Google Scholar 

  • Liu J, Wang Y, Erdélyi R, Liu R, McIntosh S W, Gou T, Chen J, Liu K, Liu L, Pan Z. 2016a. On the magnetic and energy characteristics of recurrent homologous jets from an emerging flux. Astrophys J, 833: 150

    Article  Google Scholar 

  • Liu K, Wang Y, Zhang J, Cheng X, Liu R, Shen C. 2015. Extremely large EUV late phase of solar flares. Astrophys J, 802: 35

    Article  Google Scholar 

  • Liu L, Wang Y, Wang J, Shen C, Ye P, Liu R, Chen J, Zhang Q, Wang S. 2016b. Why is a flare-rich active region CME-poor? Astrophys J, 826: 119

    Article  Google Scholar 

  • Liu R. 2013. Dynamical processes at the vertical current sheet behind an erupting flux rope. Mon Not R Astron Soc, 434: 1309–1320

    Article  Google Scholar 

  • Liu R, Alexander D. 2009. Hard X-ray emission in kinking filaments. Astrophys J, 697: 999–1009

    Article  Google Scholar 

  • Liu R, Liu C, Wang S, Deng N, Wang H. 2010. Sigmoid-to-flux-rope transition leading to a loop-like coronal mass ejection. Astrophys J, 725: L84–L90

    Article  Google Scholar 

  • Liu R, Kliem B, Török T, Liu C, Titov V S, Lionello R, Linker J A, Wang H. 2012. Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. Astrophys J, 756: 59

    Article  Google Scholar 

  • Liu R, Chen J, Wang Y, Liu K. 2016c. Investigating energetic X-shaped flares on the outskirts of a solar active region. Sci Rep, 6: 34021

    Article  Google Scholar 

  • Liu R, Kliem B, Titov V S, Chen J, Wang Y, Wang H, Liu C, Xu Y, Wiegelmann T. 2016d. Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys J, 818: 148

    Article  Google Scholar 

  • Liu W, Chen Q, Petrosian V. 2013. Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: Evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys J, 767: 168

    Article  Google Scholar 

  • Liu Y. 2008. Magnetic field overlying solar eruption regions and kink and torus instabilities. Astrophys J, 679: L151–L154

    Article  Google Scholar 

  • Liu Y D, Luhmann J G, Lugaz N, Möstl C, Davies J A, Bale S D, Lin R P. 2013. On Sun-to-Earth propagation of coronal mass ejections. Astrophys J, 769: 45

    Article  Google Scholar 

  • Liu Y D, Luhmann J G, Kajdic P, Kilpua E K J, Lugaz N, Nitta N V, Möstl C, Lavraud B, Bale S D, Farrugia C J, Galvin A B. 2014a. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Commun, 5: 3481

    Google Scholar 

  • Liu Y D, Hu H, Zhu B, Luhmann J G, Vourlidas A. 2017. Structure, propagation, and expansion of a CME-driven shock in the heliosphere: A revisit of the 2012 July 23 extreme storm. Astrophys J, 834: 158

    Article  Google Scholar 

  • Liu Y, Luhmann J G, Bale S D, Lin R P. 2009. Relationship between a coronal mass ejection-driven shock and a coronal metric Type II burst. Astrophys J, 691: L151–L155

    Article  Google Scholar 

  • Liu Y, Luhmann J G, Bale S D, Lin R P. 2011. Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: A comprehensive view. Astrophys J, 734: 84

    Article  Google Scholar 

  • Liu Z, Xu J, Gu B Z, Wang S, You J Q, Shen L X, Lu R W, Jin Z Y, Chen L F, Lou K, Li Z, Liu G Q, Xu Z, Rao C H, Hu Q Q, Li R F, Fu H W, Wang F, Bao M X, Wu M C, Zhang B R. 2014b. New vacuum solar telescope and observations with high resolution. Res Astron Astrophys, 14: 705–718

    Article  Google Scholar 

  • Low B C, Hundhausen J R. 1995. Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys J, 443: 818

    Google Scholar 

  • Lugaz N, Farrugia C, Schwadron N, Manchester W B. 2015. Heliospheric propagation of coronal mass ejections: A review. IAU General Assembly, 22: 2237318

    Google Scholar 

  • Lynch B J, Antiochos S K, DeVore C R, Luhmann J G, Zurbuchen T H. 2008. Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys J, 683: 1192–1206

    Article  Google Scholar 

  • Lynch B J, Antiochos S K, Li Y, Luhmann J G, DeVore C R. 2009. Rotation of coronal mass ejections during eruption. Astrophys J, 697: 1918–1927

    Article  Google Scholar 

  • Ma S, Raymond J C, Golub L, Lin J, Chen H, Grigis P, Testa P, Long D. 2011. Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys J, 738: 160

    Article  Google Scholar 

  • Mackay D H, van Ballegooijen A A. 2006. Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys J, 641: 577–589

    Google Scholar 

  • Mackay D H, Karpen J T, Ballester J L, Schmieder B, Aulanier G. 2010. Physics of solar prominences: II—Magnetic structure and dynamics. Space Sci Rev, 151: 333–399

    Article  Google Scholar 

  • MacNeice P, Antiochos S K, Phillips A, Spicer D S, DeVore C R, Olson K. 2004. A numerical study of the breakout model for coronal mass ejection initiation. Astrophys J, 614: 1028–1041

    Article  Google Scholar 

  • MacTaggart D, Hood A W. 2010. Simulating the “sliding doors” effect through magnetic flux emergence. Astrophys J, 716: L219–L222

    Article  Google Scholar 

  • Magara T. 2004. A model for dynamic evolution of emerging magnetic fields in the Sun. Astrophys J, 605: 480–492

    Article  Google Scholar 

  • Magara T. 2006. Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the Sun. Astrophys J, 653: 1499–1509

    Article  Google Scholar 

  • Manchester IV W, Gombosi T, DeZeeuw D, Fan Y. 2004. Eruption of a buoyantly emerging magnetic flux rope. Astrophys J, 610: 588–596

    Article  Google Scholar 

  • Martin S F. 1998. Conditions for the formation and maintenance of filaments. Sol Phys, 182: 107–137

    Article  Google Scholar 

  • Martínez González M J, Ramos A A, Arregui I, Collados M, Beck C, Rodríguez J C. 2016. On the magnetism and dynamics of prominence legs hosting tornadoes. Astrophys J, 825: 119

    Article  Google Scholar 

  • Martínez-Sykora J, Hansteen V, Carlsson M. 2008. Twisted flux tube emergence from the convection zone to the corona. Astrophys J, 679: 871–888

    Article  Google Scholar 

  • McKenzie D E. 2000. Supra-arcade downflows in long-duration solar flare events. Sol Phys, 195: 381–399

    Article  Google Scholar 

  • McKenzie D E, Canfield R C. 2008. Hinode XRT observations of a longlasting coronal sigmoid. Astron Astrophys, 481: L65–L68

    Article  Google Scholar 

  • Moore R L, Sterling A C, Hudson H S, Lemen J R. 2001. Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys J, 552: 833–848

    Article  Google Scholar 

  • Möstl C, Isavnin A, Boakes P D, Kilpua E K J, Davies J A, Harrison R A, Barnes D, Krupar V, Eastwood J P, Good S W, Forsyth R J, Bothmer V, Reiss MA, Amerstorfer T, Winslow R M, Anderson B J, Philpott L C, Rodriguez L, Rouillard A P, Gallagher P T, Zhang T L. 2017. Predictions of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. ArXiv e-prints

    Google Scholar 

  • Myers C E, Yamada M, Ji H, Yoo J, Fox W, Jara-Almonte J, Savcheva A, DeLuca E E. 2015. A dynamic magnetic tension force as the cause of failed solar eruptions. Nature, 528: 526–529

    Article  Google Scholar 

  • Nindos A, Patsourakos S, Wiegelmann T. 2012. On the role of the background overlying magnetic field in solar eruptions. Astrophys J, 748: L6

    Article  Google Scholar 

  • Nindos A, Patsourakos S, Vourlidas A, Tagikas C. 2015. How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys J, 808: 117

    Article  Google Scholar 

  • Okamoto T J, Tsuneta S, Lites B W, Kubo M, Yokoyama T, Berger T E, Ichimoto K, Katsukawa Y, Nagata S, Shibata K, Shimizu T, Shine R A, Suematsu Y, Tarbell T D, Title A M. 2008. Emergence of a helical flux rope under an active region prominence. Astrophys J, 673: L215–L218

    Article  Google Scholar 

  • Okamoto T J, Tsuneta S, Lites B W, Kubo M, Yokoyama T, Berger T E, Ichimoto K, Katsukawa Y, Nagata S, Shibata K, Shimizu T, Shine R A, Suematsu Y, Tarbell T D, Title A M. 2009. Prominence formation associated with an emerging helical flux rope. Astrophys J, 697: 913–922

    Article  Google Scholar 

  • Olmedo O, Zhang J. 2010. Partial torus instability. Astrophys J, 718: 433–440

    Article  Google Scholar 

  • Ouyang Y, Yang K, Chen P F. 2015. Is flux rope a necessary condition for the progenitor of coronal mass ejections? Astrophys J, 815: 72

  • Pariat E, Antiochos S K, DeVore C R. 2009a. A model for solar polar jets. Astrophys J, 691: 61–74

    Article  Google Scholar 

  • Pariat E, Masson S, Aulanier G. 2009b. Current buildup in emerging serpentine flux tubes. Astrophys J, 701: 1911–1921

    Article  Google Scholar 

  • Pariat E, Aulanier G, Schmieder B, Georgoulis M K, Rust D M, Bernasconi P N. 2004. Resistive emergence of undulatory flux tubes. Astrophys J, 614: 1099–1112

    Article  Google Scholar 

  • Patsourakos S, Vourlidas A, Kliem B. 2010a. Toward understanding the early stages of an impulsively accelerated coronal mass ejection. Astron Astrophys, 522: A100

    Article  Google Scholar 

  • Patsourakos S, Vourlidas A, Stenborg G. 2010b. The genesis of an impulsive coronal mass ejection observed at ultra-high cadence by AIA on SDO. Astrophys J, 724: L188–L193

    Article  Google Scholar 

  • Patsourakos S, Vourlidas A, Stenborg G. 2013. Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. Astrophys J, 764: 125

    Article  Google Scholar 

  • Pesnell W D, Thompson B J, Chamberlin P C. 2012. The solar dynamics observatory (SDO). Sol Phys, 275: 3–15

    Article  Google Scholar 

  • Peter H, Tian H, Curdt W, Schmit D, Innes D, De Pontieu B, Lemen J, Title A, Boerner P, Hurlburt N, Tarbell T D, Wuelser J P, Martínez-Sykora J, Kleint L, Golub L, McKillop S, Reeves K K, Saar S, Testa P, Kankelborg C, Jaeggli S, Carlsson M, Hansteen V. 2014. Hot explosions in the cool atmosphere of the Sun. Science, 346: 1255726–1255726

    Article  Google Scholar 

  • Pevtsov A A. 2002. Active-region filaments and X-ray sigmoids. Sol Phys, 207: 111–123

    Article  Google Scholar 

  • Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun-Earth connection. Astron Astrophys Rev, 16: 1–153

    Article  Google Scholar 

  • Pick M, Demoulin P, Krucker S, Malandraki O, Maia D. 2005. Radio and X-ray signatures of magnetic reconnection behind an ejected flux rope. Astrophys J, 625: 1019–1026

    Article  Google Scholar 

  • Priest E R, Forbes T G. 2002. The magnetic nature of solar flares. Astron Astrophys Rev, 10: 313–377

    Article  Google Scholar 

  • Qiu J, Wang H, Cheng C Z, Gary D E. 2004. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys J, 604: 900–905

    Article  Google Scholar 

  • Qiu J, Hu Q, Howard T A, Yurchyshyn V B. 2007. On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys J, 659: 758–772

    Article  Google Scholar 

  • Reeves K K, Gibson S E, Kucera T A, Hudson H S, Kano R. 2012. Thermal properties of a solar coronal cavity observed with the X-ray telescope on HINODE. Astrophys J, 746: 146

    Article  Google Scholar 

  • Rempel M. 2017. Extension of the MURaM radiative MHD code for coronal simulations. Astrophys J, 834: 10

    Article  Google Scholar 

  • Reva A A, Ulyanov A S, Shestov S V, Kuzin S V. 2016. Breakout reconnection observed by the TESIS EUV telescope. Astrophys J, 816: 90

    Article  Google Scholar 

  • Riley P, Lionello R, Mikic Z, Linker J. 2008. Using global simulations to relate the three-part structure of coronal mass ejections to in situ signatures. Astrophys J, 672: 1221–1227

    Article  Google Scholar 

  • Rust D M, Kumar A. 1996. Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys J, 464: L199–L202

    Article  Google Scholar 

  • Rust D M, LaBonte B J. 2005. Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys J, 622: L69–L72

    Article  Google Scholar 

  • Savcheva A, van Ballegooijen A. 2009. Nonlinear force-free modeling of a long-lasting coronal sigmoid. Astrophys J, 703: 1766–1777

    Article  Google Scholar 

  • Savcheva A S, van Ballegooijen A A, DeLuca E E. 2012. Field topology analysis of a long-lasting coronal sigmoid. Astrophys J, 744: 78

    Article  Google Scholar 

  • Savcheva A, Pariat E, McKillop S, McCauley P, Hanson E, Su Y, Werner E, DeLuca E E. 2015. The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys J, 810: 96

    Article  Google Scholar 

  • Schmieder B, Archontis V, Pariat E. 2014. Magnetic flux emergence along the solar cycle. Space Sci Rev, 186: 227–250

    Article  Google Scholar 

  • Schmieder B, Aulanier G, Vršnak B. 2015. Flare-CME models: An observational perspective (Invited Review). Sol Phys, 290: 3457–3486

    Article  Google Scholar 

  • Schmieder B, Demoulin P, Aulanier G, Golub L. 1996. Differential magnetic field shear in an active region. Astrophys J, 467: 881

    Article  Google Scholar 

  • Schmieder B, Mein N, Deng Y, Dumitrache C, Malherbe J M, Staiger J, Deluca E E. 2004. Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Sol Phys, 223: 119–141

    Article  Google Scholar 

  • Schmieder B, Mein P, Mein N, Levens P J, Labrosse N, Ofman L. 2017. Ha Doppler shifts in a tornado in the solar corona. Astron Astrophys, 597: A109

    Article  Google Scholar 

  • Schrijver C J, DeRosa M L, Metcalf T, Barnes G, Lites B, Tarbell T, McTiernan J, Valori G, Wiegelmann T, Wheatland M S, Amari T, Aulanier G, Démoulin P, Fuhrmann M, Kusano K, Régnier S, Thalmann J K. 2008a. Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys J, 675: 1637–1644

    Article  Google Scholar 

  • Schrijver C J, Elmore C, Kliem B, Torok T, Title A M. 2008b. Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys J, 674: 586–595

    Article  Google Scholar 

  • Seaton D B, Bartz A E, Darnel J M. 2017. Observations of the formation, development, and structure of a current sheet in an eruptive solar flare. Astrophys J, 835: 139

    Article  Google Scholar 

  • Sheeley. N R, Howard R A, Koomen M J, Michels D J. 1983. Associations between coronal mass ejections and soft X-ray events. Astrophys J, 272: 349–354

    Article  Google Scholar 

  • Shen C, Wang Y, Ye P, Zhao X P, Gui B, Wang S. 2007. Strength of coronal mass ejection-driven shocks near the Sun and their importance in predicting solar energetic particle events. Astrophys J, 670: 849–856

    Article  Google Scholar 

  • Shen C, Wang Y, Wang S, Liu Y, Liu R, Vourlidas A, Miao B, Ye P, Liu J, Zhou Z. 2012a. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat Phys, 8: 923–928

    Article  Google Scholar 

  • Shen C, Li G, Kong X, Hu J, Sun X D, Ding L, Chen Y, Wang Y, Xia L. 2013. Compound twin coronal mass ejections in the 2012 May 17 GLE event. Astrophys J, 763: 114

    Article  Google Scholar 

  • Shen Y, Liu Y, Su J. 2012b. Sympathetic partial and full filament eruptions observed in one solar breakout event. Astrophys J, 750: 12

    Article  Google Scholar 

  • Shi T, Wang Y, Wan L, Cheng X, Ding M, Zhang J. 2015. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys J, 806: 271

    Article  Google Scholar 

  • Shibata K, Masuda, S, Shimojo, M, Hara, H, Yokoyama, T, Tsuneta, S, Kosugi, T, Ogawara Y. 1995. Hot-plasma ejections associated with compact-loop solar flares. Astrophys J, 451: L83

    Article  Google Scholar 

  • Solanki S K, Usoskin I G, Kromer B, Schüssler M, Beer J. 2004. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431: 1084–1087

    Article  Google Scholar 

  • Song H Q, Zhang J, Chen Y, Cheng X. 2014a. Direct observations of magnetic flux rope formation during a solar coronal mass ejection. Astrophys J, 792: L40

    Article  Google Scholar 

  • Song H Q, Zhang J, Cheng X, Chen Y, Liu R, Wang Y M, Li B. 2014b. Temperature evolution of a magnetic flux rope in a failed solar eruption. Astrophys J, 784: 48

    Article  Google Scholar 

  • Song H Q, Chen Y, Zhang J, Cheng X, Fu H, Li G. 2015. Acceleration phases of a solar filament during its eruption. Astrophys J, 804: L38

    Article  Google Scholar 

  • Sterling A C, Hudson H S. 1997. [ITAL]Yohkoh[/ITAL] SXT observations of X-ray “Dimming” associated with a halo coronal mass ejection. Astrophys J, 491: L55–L58

    Article  Google Scholar 

  • Sturrock P A. 1966. Model of the high-energy phase of solar flares. Nature, 211: 695–697

    Article  Google Scholar 

  • Su W, Cheng X, Ding M D, Chen P F, Ning Z J, Ji H S. 2016. Investigating the conditions of the formation of a Type II radio burst on 2014 January 8. Astrophys J, 830: 70

    Article  Google Scholar 

  • Su Y, van Ballegooijen A. 2012. Observations and magnetic field modeling of a solar polar crown prominence. Astrophys J, 757: 168

    Article  Google Scholar 

  • Su Y, Golub L, van Ballegooijen A A. 2007. A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys J, 655: 606–614

    Article  Google Scholar 

  • Su Y, van Ballegooijen A, Lites B W, Deluca E E, Golub L, Grigis P C, Huang G, Ji H. 2009. Observations and nonlinear force-free field modeling of active region 10953. Astrophys J, 691: 105–114

    Article  Google Scholar 

  • Su Y, Wang T, Veronig A, Temmer M, Gan W. 2012. Solar magnetized “tornadoes:” relation to filaments. Astrophys J, 756: L41

    Article  Google Scholar 

  • Su Y, Gömöry P, Veronig A, Temmer M, Wang T, Vanninathan K, Gan W, Li Y P. 2014. Solar magnetized tornadoes: Rotational motion in a tornadolike prominence. Astrophys J, 785: L2

    Article  Google Scholar 

  • Su Y, van Ballegooijen A, McCauley P, Ji H, Reeves K K, DeLuca E E. 2015. Magnetic structure and dynamics of the erupting solar polar crown prominence on 2012 March 12. Astrophys J, 807: 144

    Article  Google Scholar 

  • Sun J Q, Cheng X, Ding M D. 2014. Differential emission measure analysis of a limb solar flare on 2012 July 19. Astrophys J, 786: 73

    Article  Google Scholar 

  • Sun J Q, Cheng X, Ding M D, Guo Y, Priest E R, Parnell C E, Edwards S J, Zhang J, Chen P F, Fang C. 2015a. Extreme ultraviolet imaging of threedimensional magnetic reconnection in a solar eruption. Nat Commun, 6: 7598

    Article  Google Scholar 

  • Sun X, Hoeksema J T, Liu Y, Chen Q, Hayashi K. 2012. A non-radial eruption in a quadrupolar magnetic configuration with a coronal null. Astrophys J, 757: 149

    Article  Google Scholar 

  • Sun X, Bobra M G, Hoeksema J T, Liu Y, Li Y, Shen C, Couvidat S, Norton A A, Fisher G H. 2015b. Why is the great solar active region 12192 flare-rich but CME-poor? Astrophys J, 804: L28

    Article  Google Scholar 

  • Syntelis P, Gontikakis C, Patsourakos S, Tsinganos K. 2016. The spectroscopic imprint of the pre-eruptive configuration resulting into two major coronal mass ejections. Astron Astrophys, 588: A16

    Article  Google Scholar 

  • Temmer M, Veronig A M, Vršnak B, Rybák J, Gömöry P, Stoiser S, Maricic D. 2008. Acceleration in fast Halo CMEs and synchronized flare HXR bursts. Astrophys J, 673: L95–L98

    Article  Google Scholar 

  • Temmer M, Veronig A M, Kontar E P, Krucker S, Vršnak B. 2010. Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys J, 712: 1410–1420

    Article  Google Scholar 

  • Temmer M, Thalmann J K, Dissauer K, Veronig A M, Tschernitz J, Hinterreiter J, Rodriguez L. 2017. On flare-CME characteristics from Sun to Earth combining remotesensing image data with in-situ measurements supported by modeling. ArXiv e-prints

  • Thalmann J K, Su Y, Temmer M, Veronig A M. 2015. The confined x-class flares of solar active region 2192. Astrophys J, 801: L23

    Article  Google Scholar 

  • Tian H, McIntosh S W, Xia L, He J, Wang X. 2012. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations? Astrophys J, 748: 106

  • Tian H, Li G, Reeves K K, Raymond J C, Guo F, Liu W, Chen B, Murphy N A. 2014. Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare. Astrophys J, 797: L14

    Article  Google Scholar 

  • Titov V S, Démoulin P. 1999. Basic topology of twisted magnetic configurations in solar ares. Astron Astrophys, 351: 707

    Google Scholar 

  • Titov V S, Hornig G, Démoulin P. 2002. Theory of magnetic connectivity in the solar corona. J Geophys Res-Space Phys, 107: 1164

    Article  Google Scholar 

  • Török T, Kliem B. 2005. Confined and ejective eruptions of kink-unstable flux ropes. Astrophys J, 630: L97–L100

    Article  Google Scholar 

  • Török T, Kliem B, Titov V S. 2004. Ideal kink instability of a magnetic loop equilibrium. Astron Astrophys, 413: L27–L30

    Article  Google Scholar 

  • Török T, Panasenco O, Titov V S, Mikic Z, Reeves K K, Velli M, Linker J A, De Toma G. 2011. A model for magnetically coupled sympathetic eruptions. Astrophys J, 739: L63

    Article  Google Scholar 

  • Tripathi D, Kliem B, Mason H E, Young P R, Green L M. 2009. Temperature tomography of a coronal sigmoid supporting the gradual formation of a flux rope. Astrophys J, 698: L27–L32

    Article  Google Scholar 

  • Tripathi D, Reeves K K, Gibson S E, Srivastava A, Joshi N C. 2013. SDO/AIA observations of a partially erupting prominence. Astrophys J, 778: 142

    Article  Google Scholar 

  • Tziotziou K, Georgoulis M K, Liu Y. 2013. Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys J, 772: 115

    Article  Google Scholar 

  • Ugarte-Urra I, Warren H P, Winebarger A R. 2007. The magnetic topology of coronal mass ejection sources. Astrophys J, 662: 1293–1301

    Article  Google Scholar 

  • van Ballegooijen A A, Martens P C H. 1989. Formation and eruption of solar prominences. Astrophys J, 343: 971–984

    Article  Google Scholar 

  • van Ballegooijen A A, Cartledge N P, Priest E R. 1998. Magnetic flux transport and the formation of filament channels on the Sun. Astrophys J, 501: 866–881

    Article  Google Scholar 

  • Vargas Domínguez S, MacTaggart D, Green L, van Driel-Gesztelyi L, Hood A W. 2012. On signatures of twisted magnetic flux tube emergence. Sol Phys, 278: 33–45

    Article  Google Scholar 

  • Vasanth V, Chen Y, Feng S, Ma S, Du G, Song H, Kong X, Wang B. 2016. An eruptive hot-channel structure observed at metric wavelength as a moving Type-IV solar radio burst. Astrophys J, 830: L2

    Article  Google Scholar 

  • Vemareddy P, Zhang J. 2014. Initiation and eruption process of magnetic flux rope from solar active region NOAA 11719 to Earth-directed CME. Astrophys J, 797: 80

    Article  Google Scholar 

  • Vemareddy P, Cheng X, Ravindra B. 2016. Sunspot rotation as a driver of major solar eruptions in the NOAA active region 12158. Astrophys J, 829: 24

    Article  Google Scholar 

  • Vourlidas A, Lynch B J, Howard R A, Li Y. 2013. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol Phys, 284: 179–201

    Google Scholar 

  • Wan L, Cheng X, Shi T, Su W, Ding M D. 2016. The formation and early evolution of a coronal mass ejection and its associated shock wave on 2014 January 8. Astrophys J, 826: 174

    Article  Google Scholar 

  • Wang H, Cao W, Liu C, Xu Y, Liu R, Zeng Z, Chae J, Ji H. 2015. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. Nat Commun, 6: 7008

    Article  Google Scholar 

  • Wang J. 2006. Reconnection in the lower solar atmosphere and coronal mass ejections. Adv Space Res, 38: 1887–1893

    Article  Google Scholar 

  • Wang J, Ding M, Ji H, Deng Y, Liu Y, Liu Z, Qu Z, Wang H, Xia L, Yan Y. 2016a. A few perspectives of solar physics research in China-Current status and future. Asian J Phys, 25: 461–498

    Google Scholar 

  • Wang R, Liu Y D, Zimovets I, Hu H, Dai X, Yang Z. 2016b. Sympathetic solar filament eruptions. Astrophys J, 827: L12

    Article  Google Scholar 

  • Wang Y, Zhang J. 2007. A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. Astrophys J, 665: 1428–1438

    Article  Google Scholar 

  • Wang Y M, Stenborg G. 2010. Spinning motions in coronal cavities. Astrophys J, 719: L181–L184

    Article  Google Scholar 

  • Wang Y, Zhuang B, Hu Q, Liu R, Shen C, Chi Y. 2016c. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res Space Phys, 121: 9316–9339

    Article  Google Scholar 

  • Webb D F, Forbes T G, Aurass H, Chen J, Martens P, Rompolt B, Rusin V, Martin S F. 1994. Material ejection. Sol Phys, 153: 73–89

    Article  Google Scholar 

  • Wedemeyer S, Scullion E, Rouppe van der Voort L, Bosnjak A, Antolin P. 2013. Are giant tornadoes the legs of solar prominences? Astrophys J, 774: 123

    Article  Google Scholar 

  • Wedemeyer-Böhm S, Scullion E, Steiner O, van der Voort L R, de la Cruz Rodriguez J, Fedun V, Erdélyi R. 2012. Magnetic tornadoes as energy channels into the solar corona. Nature, 486: 505–508

    Article  Google Scholar 

  • Williams D R, Török T, Démoulin P, van Driel-Gesztelyi L, Kliem B. 2005. Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys J, 628: L163–L166

    Article  Google Scholar 

  • Wu Z, Chen Y, Huang G, Nakajima H, Song H, Melnikov V, Liu W, Li G, Chandrashekhar K, Jiao F. 2016. Microwave imaging of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare. Astrophys J, 820: L29

    Article  Google Scholar 

  • Xia C, Keppens R, Guo Y. 2014. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. Astrophys J, 780: 130

    Article  Google Scholar 

  • Xue Z, Yan X, Cheng X, Yang L, Su Y, Kliem B, Zhang J, Liu Z, Bi Y, Xiang Y, Yang K, Zhao L. 2016. Observing the release of twist by magnetic reconnection in a solar filament eruption. Nat Commun, 7: 11837

    Article  Google Scholar 

  • Yan X L, Xue Z K, Liu J H, Ma L, Kong D F, Qu Z Q, Li Z. 2014. Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys J, 782: 67

    Article  Google Scholar 

  • Yan X L, Xue Z K, Pan G M, Wang J C, Xiang Y Y, Kong D F, Yang L H. 2015. The formation and magnetic structures of active-region filaments observed by NVST, SDO, and HINODE. Astrophys J Suppl Ser, 219: 17

    Article  Google Scholar 

  • Yan X L, Priest E R, Guo Q L, Xue Z K, Wang J C, Yang L H. 2016. The formation of an inverse S-shaped active-region filament driven by sunspot motion and magnetic reconnection. Astrophys J, 832: 23

    Article  Google Scholar 

  • Yan Y, Deng Y, Karlický M, Fu Q, Wang S, Liu Y. 2001. The magnetic rope structure and associated energetic processes in the 2000 July 14 solar flare. Astrophys J, 551: L115–L119

    Article  Google Scholar 

  • Yang B, Jiang Y, Yang J, Yu S, Xu Z. 2016a. The rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. Astrophys J, 816: 41

    Article  Google Scholar 

  • Yang K, Guo Y, Ding M D. 2015a. On the 2012 October 23 circular ribbon flare: Emission features and magnetic topology. Astrophys J, 806: 171

    Article  Google Scholar 

  • Yang K, Guo Y, Ding M D. 2016b. Quantifying the topology and evolution of a magnetic flux rope associated with multi-flare activities. Astrophys J, 824: 148

    Article  Google Scholar 

  • Yang S, Xie W, Liu J. 2015b. Eruption of the magnetic flux rope in a quick decaying active region. Adv Space Res, 55: 1553–1562

    Article  Google Scholar 

  • Yang S, Zhang J, Liu Z, Xiang Y. 2014. New vacuum solar telescope observations of a flux rope tracked by a filament activation. Astrophys J, 784: L36

    Article  Google Scholar 

  • Yashiro S, Gopalswamy N, Michalek G, St. Cyr O C, Plunkett S P, Rich N B, Howard R A. 2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res, 109: A07105

    Article  Google Scholar 

  • Yashiro S, Akiyama S, Gopalswamy N, Howard R A. 2006. Different powerlaw indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys J, 650: L143–L146

    Article  Google Scholar 

  • Zhang J, Dere K P. 2006. A statistical study of main and residual accelerations of coronal mass ejections. Astrophys J, 649: 1100–1109

    Article  Google Scholar 

  • Zhang J, Liu Y. 2011. Ubiquitous rotating network magnetic fields and extreme-ultraviolet cyclones in the quiet Sun. Astrophys J, 741: L7

    Article  Google Scholar 

  • Zhang J, Cheng X, Ding M D. 2012. Observation of an evolving magnetic flux rope before and during a solar eruption. Nat Commun, 3: 747

    Article  Google Scholar 

  • Zhang J, Yang S H, Li T. 2015a. Flux rope proxies during 2013 detected by the Solar Dynamics Observatory. Astron Astrophys, 580: A2

    Article  Google Scholar 

  • Zhang J, Dere K P, Howard R A, Kundu M R, White S M. 2001. On the temporal relationship between coronal mass ejections and flares. Astrophys J, 559: 452–462

    Article  Google Scholar 

  • Zhang J, Dere K P, Howard R A, Vourlidas A. 2004. A study of the kinematic evolution of coronal mass ejections. Astrophys J, 604: 420–432

    Article  Google Scholar 

  • Zhang M, Low B C. 2003. Magnetic flux emergence into the solar corona. III. The role of magnetic helicity conservation. Astrophys J, 584: 479–496

    Google Scholar 

  • Zhang Q M, Ning Z J, Guo Y, Zhou T H, Cheng X, Ji H S, Feng L, Wiegelmann T. 2015b. Multiwavelength observations of a partially eruptive filament on 2011 September 8. Astrophys J, 805: 4

    Article  Google Scholar 

  • Zharkov S, Green L M, Matthews S A, Zharkova V V. 2011. 2011 February 15: Sunquakes produced by flux rope eruption. Astrophys J, 741: L35

    Article  Google Scholar 

  • Zhou G P, Zhang J, Wang J X. 2016. Observations of magnetic flux-rope oscillation during the precursor phase of a solar eruption. Astrophys J, 823: L19

    Article  Google Scholar 

  • Zhu C, Liu R, Alexander D, McAteer R T J. 2016. Observation of the evolution of a current sheet in a solar flare. Astrophys J, 821: L29

    Article  Google Scholar 

  • Zimovets I, Vilmer N, Chian A C L, Sharykin I, Struminsky A. 2012. Spatially resolved observations of a split-band coronal type II radio burst. Astron Astrophys, 547: A6

    Article  Google Scholar 

  • Zuccarello F P, Aulanier G, Gilchrist S A. 2016. The apparent critical decay index at the onset of solar prominence eruptions. Astrophys J, 821: L23

    Article  Google Scholar 

  • Zuccarello F P, Seaton D B, Mierla M, Poedts S, Rachmeler L A, Romano P, Zuccarello F. 2014. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys J, 785: 88

    Article  Google Scholar 

  • Zuccarello F P, Chandra R, Schmieder B, Aulanier G, Joshi R. 2017a. Transition from eruptive to confined flares in the same active region. Astron Astrophys, 601: A26

    Article  Google Scholar 

  • Zuccarello F P, Aulanier G, Dudík J, Démoulin P, Schmieder B, Gilchrist S A. 2017b. Vortex and sink flows in eruptive flares as a model for coronal implosions. Astrophys J, 837: 115

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the associate editor and three anonymous referees, whose comments and suggests improved the manuscript. We also thank Prof. Feng X S and Prof. Wan W X for cordial invitation to write the review paper and the first ISSI workshop on “Decoding the Pre-Eruptive Magnetic Configuration of Coronal Mass Ejections” led by S. Patsourakos and A. Vourlidas for useful discussions. Chen X, Guo Y, and Ding M D are supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (Grant Nos. 11303016, 11373023, 11533005, 11203014) and National Key Basic Research Special Foundation (Grant No. 2014CB744203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Guo, Y. & Ding, M. Origin and structures of solar eruptions I: Magnetic flux rope. Sci. China Earth Sci. 60, 1383–1407 (2017). https://doi.org/10.1007/s11430-017-9074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9074-6

Keywords

Navigation