Skip to main content
Log in

Flare-CME Models: An Observational Perspective (Invited Review)

  • Solar and Stellar Flares
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Eruptions, flares, and coronal mass ejection (CMEs) are due to physical phenomena mainly driven by an initially force-free current-carrying magnetic field. We review some key observations relevant to the current theoretical trigger mechanisms of the eruption and to the energy release via reconnection. Sigmoids observed in X-rays and UV, as well as the pattern (double J-shaped) of electric currents in the photosphere show clear evidence of the existence of currents parallel to the magnetic field and can be the signature of a flux rope that is detectable in CMEs. The magnetic helicity of filaments and active regions is an interesting indirectly measurable parameter because it can quantify the twist of the flux rope. On the other hand, the magnetic helicity of the solar structures allows us to associate solar eruptions and magnetic clouds in the heliosphere. The magnetic topology analysis based on the 3D magnetic field extrapolated from vector magnetograms is a good tool for identifying the reconnection locations (null points and/or the 3D large volumes – hyperbolic flux tube, HFT). Flares are associated more with quasi-separatrix layers (QSLs) and HFTs than with a single null point, which is a relatively rare case. We review various mechanisms that have been proposed to trigger CMEs and their observable signatures: by “breaking” the field lines overlying the flux rope or by reconnection below the flux rope to reduce the magnetic tension, or by letting the flux rope to expand until it reaches a minimum threshold height (loss of equilibrium or torus instability). Additional mechanisms are commonly operating in the solar atmosphere. Examples of observations are presented throughout the article and are discussed in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Acton, L., Tsuneta, S., Ogawara, Y., Bentley, R., Bruner, M., Canfield, R., Culhane, L., Doschek, G., Hiei, E., Hirayama, T.: 1992, The Yohkoh mission for high-energy solar physics. Science 258, 618. ADS . DOI .

    Article  ADS  Google Scholar 

  • Amari, T., Canou, A., Aly, J.-J.: 2014, Characterizing and predicting the magnetic environment leading to solar eruptions. Nature 514, 465. ADS . DOI .

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 2000, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett. 529, L49. ADS . DOI .

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231. ADS . DOI .

    Article  ADS  Google Scholar 

  • Andrews, M.D., Howard, R.A.: 2001, A two-type classification of LASCO coronal mass ejection. Space Sci. Rev. 95, 147. ADS .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. ADS . DOI .

    Article  ADS  Google Scholar 

  • Anzer, U.: 1978, Can coronal loop transients be driven magnetically. Solar Phys. 57, 111. ADS . DOI .

    Article  ADS  Google Scholar 

  • Anzer, U., Pneuman, G.W.: 1982, Magnetic reconnection and coronal transients. Solar Phys. 79, 129. ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W., Tsinganos, K.: 2014, Recurrent explosive eruptions and the “Sigmoid-to-arcade” transformation in the Sun driven by dynamical magnetic flux emergence. Astrophys. J. Lett. 786, L21. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G.: 2014, The physical mechanisms that initiate and drive solar eruptions. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) IAU Symposium 300, 184. ADS . DOI .

    Google Scholar 

  • Aulanier, G., Démoulin, P.: 2003, Amplitude and orientation of prominence magnetic fields from constant-alpha magnetohydrostatic models. Astron. Astrophys. 402, 769. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, A110. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., DeLuca, E.E., Antiochos, S.K., McMullen, R.A., Golub, L.: 2000, The topology and evolution of the Bastille day flare. Astrophys. J. 540, 1126. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. ADS . DOI .

    Article  ADS  Google Scholar 

  • Aurass, H., Vršnak, B., Hofmann, A., Rudžjak, V.: 1999, Flares in sigmoidal coronal structures a case study. Solar Phys. 190, 267. ADS . DOI .

    Article  ADS  Google Scholar 

  • Baty, H.: 2001, On the MHD stability of the \(\mathbf{m} = 1\) kink mode in solar coronal loops. Astron. Astrophys. 367, 321. ADS . DOI .

    Article  ADS  Google Scholar 

  • Batygin, V.V., Toptygin, I.N.: 1962, Problems in Electrodynamics, Academic Press, New York.

    Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44. ADS . DOI .

    Article  ADS  Google Scholar 

  • Bommier, V., Leroy, J.L.: 1998, Global pattern of the magnetic field vectors above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences. In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pac. CS 150, 434. ADS .

    Google Scholar 

  • Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., Cyr, O.C.St., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. 109, A03103. ADS . DOI .

    ADS  Google Scholar 

  • Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., Li, H.: 2009, Evidence for a pre-eruptive twisted flux rope using the THEMIS vector magnetograph. Astrophys. J. Lett. 693, L27. DOI .

    Article  ADS  Google Scholar 

  • Carley, E.P., Long, D.M., Byrne, J.P., Zucca, P., Bloomfield, D.S., McCauley, J., Gallagher, P.T.: 2013, Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys. 9, 811. ADS . DOI .

    Article  Google Scholar 

  • Carmichael, H.: 1964, A Process for Flares, Series NASA SP 50, NASA, Washington, 451. ADS .

    Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53. ADS . DOI .

    Article  ADS  Google Scholar 

  • Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261, 127. ADS . DOI .

    Article  ADS  Google Scholar 

  • Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, J., Krall, J.: 2003, Acceleration of coronal mass ejections. J. Geophys. Res. 108, 1410. DOI .

    Article  Google Scholar 

  • Chen, J., Marqué, C., Vourlidas, A., Krall, J., Schuck, P.W.: 2006, The flux-rope scaling of the acceleration of coronal mass ejections and eruptive prominences. Astrophys. J. 649, 452. ADS . DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112. ADS . DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8, 1. ADS . DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. ADS . DOI .

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Ding, M.D., Guo, Y., Su, J.T.: 2011, A comparative study of confined and eruptive flares in NOAA AR 10720. Astrophys. J. 732, 87. DOI .

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Zhang, J., Sun, X.D., Guo, Y., Wang, Y.M., Kliem, B., Deng, Y.Y.: 2014a, Formation of a double-Decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys. J. 789, 93. ADS . DOI .

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Guo, Y., Zhang, J., Vourlidas, A., Liu, Y.D., Olmedo, O., Sun, J.Q., Li, C.: 2014b, Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys. J. 780, 28. ADS . DOI .

    Article  ADS  Google Scholar 

  • Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoeffective? J. Geophys. Res. 117, 11102. ADS . DOI .

    Article  Google Scholar 

  • Dalmasse, K., Pariat, E., Valori, G., Démoulin, P., Green, L.M.: 2013, First observational application of a connectivity-based helicity flux density. Astron. Astrophys. 555, L6. ADS . DOI .

    Article  ADS  Google Scholar 

  • Dalmasse, K., Pariat, E., Démoulin, P., Aulanier, G.: 2014, Photospheric injection of magnetic helicity: Connectivity-based flux density method. Solar Phys. 289, 107. ADS . DOI .

    Article  ADS  Google Scholar 

  • Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107. ADS . DOI .

    Article  ADS  Google Scholar 

  • Delannée, C., Török, T., Aulanier, G., Hochedez, J.-F.: 2008, A new model for propagating parts of EIT waves: A current shell in a CME. Solar Phys. 247, 123. ADS . DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J. 718, 1388. ADS . DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Hénoux, J.C., Mandrini, C.H.: 1994, Are magnetic null points important in solar flares? Astron. Astrophys. 285, 1023. ADS .

    ADS  Google Scholar 

  • Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631. ADS . DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Bagala, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305. ADS .

    ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650. DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Vourlidas, A., Pick, M., Bouteille, A.: 2012, Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 750, 147. ADS . DOI .

    Article  ADS  Google Scholar 

  • Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect – What can it tell us about the impulsive and gradual phases of solar flares? Solar Phys. 146, 177. ADS . DOI .

    Article  ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Kreplin, R.W., Michels, D.J., Moses, J.D., Moulton, N.E., Socker, D.G., Cyr, O.C.St., Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Chauvineau, J.P., Marioge, J.P., Defise, J.M., Jamar, C., Rochus, P., Catura, R.C., Lemen, J.R., Gurman, J.B., Neupert, W., Clette, F., Cugnon, P., van Dessel, E.L., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M.: 1997, EIT and LASCO observations of the initiation of a coronal mass ejection. Solar Phys. 175, 601. ADS . DOI .

    Article  ADS  Google Scholar 

  • Dudík, J., Janvier, M., Aulanier, G., Del Zanna, G., Karlický, M., Mason, H.E., Schmieder, B.: 2014, Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA. Astrophys. J. 784, 144. ADS . DOI .

    Article  ADS  Google Scholar 

  • Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: Two-dimensional results. Astrophys. J. 492, 804. ADS . DOI .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2001, The emergence of a twisted \(\Omega\)-tube into the solar atmosphere. Astrophys. J. Lett. 554, L111. ADS . DOI .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529. DOI .

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105. ADS . DOI .

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2004, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123. ADS . DOI .

    Article  ADS  Google Scholar 

  • Filippov, B., Martsenyuk, O., Srivastava, A.K., Uddin, W.: 2015, Solar magnetic flux ropes. J. Astron. Astrophys. ADS . arXiv . DOI

    Google Scholar 

  • Forbes, T.G.: 1986, Fast-shock formation in line-tied magnetic reconnection models of solar flares. Astrophys. J. 305, 553. ADS . DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 1990, Numerical simulation of a catastrophe model for coronal mass ejections. J. Geophys. Res. 95, 11919. ADS . DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153. DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Isenberg, P.A.: 1991, A catastrophe mechanism for coronal mass ejections. Astrophys. J. 373, 294. DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Malherbe, J.M.: 1986, A shock condensation mechanism for loop prominences. Astrophys. J. Lett. 302, L67. ADS . DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1995, Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377. ADS . DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251. DOI .

    Article  ADS  Google Scholar 

  • Foukal, P.: 1971, Morphological relationships in the chromospheric \(\mbox {H}\upalpha\) fine structure. Solar Phys. 19, 59. ADS . DOI .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161. ADS . DOI .

    Article  ADS  Google Scholar 

  • Gibb, G.P.S., Mackay, D.H., Green, L.M., Meyer, K.A.: 2014, Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms. Astrophys. J. 782, 71. ADS . DOI .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: The link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590. ADS . DOI .

    Article  ADS  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120, 89. ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Kundu, M.R.: 1992, Estimation of the mass of a coronal mass ejection from radio observations. Astrophys. J. Lett. 390, L37. ADS . DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, The speeds of coronal mass ejection events. Solar Phys. 48, 389. ADS . DOI .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Wallace, A.J.: 2011, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2. DOI .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI .

    Article  ADS  Google Scholar 

  • Guo, Y., Schmieder, B., Démoulin, P., Wiegelmann, T., Aulanier, G., Török, T., Bommier, V.: 2010a, Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J. 714, 343. ADS . DOI .

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Schmieder, B., Li, H., Török, T., Wiegelmann, T.: 2010b, Driving mechanism and onset condition of a confined eruption. Astrophys. J. Lett. 725, L38. ADS . DOI .

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Schmieder, B., Démoulin, P., Li, H.: 2012, Evolution of hard x-ray sources and ultraviolet solar flare ribbons for a confined eruption of a magnetic flux rope. Astrophys. J. 746, 17. ADS . DOI .

    Article  ADS  Google Scholar 

  • Guo, Y., Démoulin, P., Schmieder, B., Ding, M.D., Vargas Domínguez, S., Liu, Y.: 2013, Recurrent coronal jets induced by repetitively accumulated electric currents. Astron. Astrophys. 555, A19. ADS . DOI .

    Article  ADS  Google Scholar 

  • Hale, G.E.: 1927, The fields of force in the atmosphere of the Sun. Nature 119, 708. ADS . DOI .

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1995, The nature of solar flares associated with coronal mass ejection. Astron. Astrophys. 304, 585. ADS .

    ADS  Google Scholar 

  • Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E.E., Golub, L., Watanabe, T., Berger, T.: 2008, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1383. ADS . DOI .

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323. ADS . DOI .

    Article  ADS  Google Scholar 

  • Hood, A.W., Archontis, V., Galsgaard, K., Moreno-Insertis, F.: 2009, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999. DOI .

    Article  ADS  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91, 10951. ADS . DOI .

    Article  ADS  Google Scholar 

  • Inoue, S., Hayashi, K., Magara, T., Choe, G.S., Park, Y.D.: 2014, Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. I. Comparison with the observations. Astrophys. J. 788, 182. ADS . DOI .

    Article  ADS  Google Scholar 

  • Inoue, S., Hayashi, K., Magara, T., Choe, G.S., Park, Y.D.: 2015, Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. II. Dynamics connecting the solar flare and the coronal mass ejection. Astrophys. J. 803, 73. ADS . DOI .

    Article  ADS  Google Scholar 

  • Isenberg, P.A., Forbes, T.G.: 2007, A three-dimensional line-tied magnetic field model for solar eruptions. Astrophys. J. 670, 1453. ADS . DOI .

    Article  ADS  Google Scholar 

  • Jackson, B.V., Howard, R.A., Koomen, M.J., Michels, D.J., Sheeley, N.R. Jr.: 1985, The mass distribution of coronal mass ejections. In: Bull. Am. Astron. Soc. 17, 636. ADS .

    Google Scholar 

  • Jackson, J.D.: 1998, Classical Electrodynamics, 3rd edn. Wiley, New York, 218.

    Google Scholar 

  • Jacobs, C., Roussev, I.I., Lugaz, N., Poedts, S.: 2009, The internal structure of coronal mass ejections: Are all regular magnetic clouds flux ropes? Astrophys. J. Lett. 695, L171. ADS . DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Pariat, E., Démoulin, P.: 2013, The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77. ADS . DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Démoulin, P., Pariat, E.: 2014, Electric currents in flare ribbons: Observations and three-dimensional standard model. Astrophys. J. 788, 60. ADS . DOI .

    Article  ADS  Google Scholar 

  • Jiang, C., Feng, X., Wu, S.T., Hu, Q.: 2013, Magnetohydrodynamic simulation of a sigmoid eruption of active region 11283. Astrophys. J. Lett. 771, L30. ADS . DOI .

    Article  ADS  Google Scholar 

  • Jouve, L., Brun, A.S., Aulanier, G.: 2013, Global dynamics of subsurface solar active regions. Astrophys. J. 762, 4. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Moore, R.L., Kane, S.R., Zirin, H.: 1988, Filament eruptions and the impulsive phase of solar flares. Astrophys. J. 328, 824. DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Linton, M.G., Török, T., Karlický, M.: 2010, Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source II. Numerical modeling. Solar Phys. 266, 91. DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Lin, J., Forbes, T.G., Priest, E.R., Török, T.: 2014a, Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope. Astrophys. J. 789, 46. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T., Titov, V.S., Lionello, R., Linker, J.A., Liu, R., Liu, C., Wang, H.: 2014b, Slow rise and partial eruption of a double-decker filament. II. A double flux rope model. Astrophys. J. 792, 107. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kumar, P., Cho, K.-S.: 2014, Multiwavelength observation of a large-scale flux rope eruption above a kinked small filament. Astron. Astrophys. 572, A83. ADS . DOI .

    Article  ADS  Google Scholar 

  • Kuperus, M., Raadu, M.A.: 1974, The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189. http://esoads.eso.org/abs/1974A%26A....31..189K .

    ADS  Google Scholar 

  • Leake, J.E., Linton, M.G., Antiochos, S.K.: 2014, Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys. J. 787, 46. ADS . DOI .

    Article  ADS  Google Scholar 

  • Leake, J.E., Linton, M.G., Török, T.: 2013, Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J. 778, 99. ADS . DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. ADS . DOI .

    Article  ADS  Google Scholar 

  • Li, H., Schmieder, B., Aulanier, G., Berlicki, A.: 2006, Is pre-eruptive null point reconnection required for triggering eruptions? Solar Phys. 237, 85. ADS . DOI .

    Article  ADS  Google Scholar 

  • Li, H., Schmieder, B., Song, M.T., Bommier, V.: 2007, Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron. Astrophys. 475, 1081. ADS . DOI .

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. ADS . DOI .

    Article  ADS  Google Scholar 

  • Lites, B.W.: 2005, Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. Astrophys. J. 622, 1275. ADS . DOI .

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Lee, J., Wiegelmann, T., Moore, R.L., Wang, H.: 2013, Evidence for solar Tether-cutting magnetic reconnection from coronal field extrapolations. Astrophys. J. Lett. 778, L36. ADS . DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Sun, X.: 2014, Test of the hemispheric rule of magnetic helicity in the Sun using the Helioseismic and Magnetic Imager (HMI) data. Astrophys. J. Lett. 783, L1. ADS . DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: A comprehensive view. Astrophys. J. 734, 84. ADS . DOI .

    Article  ADS  Google Scholar 

  • López Ariste, A., Aulanier, G., Schmieder, B., Sainz Dalda, A.: 2006, First observation of bald patches in a filament channel and at a barb endpoint. Astron. Astrophys. 456, 725. ADS . DOI .

    Article  ADS  Google Scholar 

  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-hale active region. Astrophys. J. 544, 540. ADS . DOI .

    Article  ADS  Google Scholar 

  • Low, B.C., Zhang, M.: 2002, The hydromagnetic origin of the two dynamical types of solar coronal mass ejections. Astrophys. J. Lett. 564, L53. ADS . DOI .

    Article  ADS  Google Scholar 

  • Lugaz, N., Roussev, I.I.: 2011, Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images. J. Atmos. Solar-Terr. Phys. 73, 1187. ADS . DOI .

    Article  ADS  Google Scholar 

  • Luoni, M.L., Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Kövári, Z.: 2004, Can we determine the magnetic helicity sign of the solar active regions? Bol. Asoc. Argent. Astron. 47, 14. ADS .

    ADS  Google Scholar 

  • Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues. Solar Phys. 270, 45. DOI .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192. ADS . DOI .

    Article  ADS  Google Scholar 

  • MacQueen, R.M., Fisher, R.R.: 1983, The kinematics of solar inner coronal transients. Solar Phys. 89, 89. ADS . DOI .

    Article  ADS  Google Scholar 

  • MacTaggart, D., Hood, A.W.: 2010, Simulating the “Sliding Doors” effect through magnetic flux emergence. Astrophys. J. Lett. 716, L219. DOI .

    Article  ADS  Google Scholar 

  • Maia, D., Vourlidas, A., Pick, M., Howard, R., Schwenn, R., Magalhães, A.: 1999, Radio signatures of a fast coronal mass ejection development on November 6, 1997. J. Geophys. Res. 104, 12507. ADS . DOI .

    Article  ADS  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588. ADS . DOI .

    Article  ADS  Google Scholar 

  • Manchester, W.B. IV, Vourlidas, A., Tóth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Three-dimensional MHD Simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys. J. 684, 1448. ADS . DOI .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293. ADS . DOI .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D.: 2014, Topological analysis of emerging bipole clusters producing violent solar events. Solar Phys. 289, 2041. ADS . DOI .

    Article  ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: I. Evolution of morphological features of the eruption. Solar Phys. 225, 337. ADS . DOI .

    Article  ADS  Google Scholar 

  • Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99. DOI .

    Article  ADS  Google Scholar 

  • Marqué, C., Lantos, P., Delouis, J.M., Alissandrakis, C.E.: 2001, Radio observations of filaments at metric and decimetric wavelengths. Astrophys. Space Sci. 277, 329. ADS . DOI .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Filament chirality: A link between fine-scale and global patterns (review). In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) IAU Colloq. 167: New Perspectives on Solar Prominences, Astron. Soc. Pacific CS 150, 419. ADS .

    Google Scholar 

  • Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. ADS . DOI .

    Article  ADS  Google Scholar 

  • McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: Statistical properties, kinematics, and online catalog. Solar Phys. DOI .

    Google Scholar 

  • Melrose, D.B.: 1991, Neutralized and unneutralized current patterns in the solar corona. Astrophys. J. 381, 306. ADS . DOI .

    Article  ADS  Google Scholar 

  • Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic field arcades. Astrophys. J. 430, 898. ADS . DOI .

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astron. Astrophys. 499, 893. ADS . DOI .

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B., Hanslmeier, A.: 2007, Reconnection and energy release rates in a two-ribbon flare. Astron. Astrophys. 461, 697. ADS . DOI .

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694. ADS . DOI .

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, Relationship between CME kinematics and flare strength. J. Korean Astron. Soc. 36, 61. ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI .

    Article  ADS  Google Scholar 

  • Mouschovias, T.C., Poland, A.I.: 1978, Expansion and broadening of coronal loop transients – A theoretical explanation. Astrophys. J. 220, 675. ADS . DOI .

    Article  ADS  Google Scholar 

  • Musset, S., Vilmer, N., Bommier, V.: 2015, Energetic electrons and electric currrent in the flare X2.2 of February 2011. Astron. Astrophys., in press.

  • Nakagawa, Y., Raadu, M.A., Billings, D.E., McNamara, D.: 1971, On the topology of filaments and chromospheric fibrils near sunspots. Solar Phys. 19, 72. ADS . DOI .

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59. ADS . DOI .

    Article  ADS  Google Scholar 

  • Neupert, W.M., Thompson, B.J., Gurman, J.B., Plunkett, S.P.: 2001, Eruption and acceleration of flare-associated coronal mass ejection loops in the low corona. J. Geophys. Res. 106, 25215. DOI .

    Article  ADS  Google Scholar 

  • Nindos, A., Patsourakos, S., Wiegelmann, T.: 2012, On the role of the background overlying magnetic field in solar eruptions. Astrophys. J. Lett. 748, L6. ADS . DOI .

    Article  ADS  Google Scholar 

  • Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: 2008, Emergence of a helical flux rope under an active region prominence. Astrophys. J. Lett. 673, L215. ADS . DOI .

    Article  ADS  Google Scholar 

  • Pariat, E., Démoulin, P., Nindos, A.: 2007, How to improve the maps of magnetic helicity injection in active regions? Adv. Space Res. 39, 1706. ADS . DOI .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2002, Active-region filaments and X-ray sigmoids. Solar Phys. 207, 111. ADS . DOI .

    Article  ADS  Google Scholar 

  • Pneuman, G.W.: 1980, The physical structure of coronal holes – Influence of magnetic fields and coronal heating. Astron. Astrophys. 81, 161. ADS .

    ADS  Google Scholar 

  • Priest, E.R.: 1981, Solar Magneto-Hydrodynamics, Gordon and Breach Science Publishers, London. ADS

    Google Scholar 

  • Pulkkinen, T.: 2007, Space weather: Terrestrial perspective. Living Rev. Solar Phys. 4, 1. ADS . DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Yurchyshyn, V.B.: 2005, Magnetic reconnection flux and coronal mass ejection velocity. Astrophys. J. Lett. 634, L121. ADS . DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Wang, H., Cheng, C.Z., Gary, D.E.: 2004, Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys. J. 604, 900. ADS . DOI .

    Article  ADS  Google Scholar 

  • Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. ADS . DOI .

    Article  ADS  Google Scholar 

  • Rust, D.M.: 1983, Coronal disturbances and their terrestrial effects. Space Sci. Rev. 34, 21. ADS . DOI .

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. ADS . DOI .

    Article  ADS  Google Scholar 

  • Sakurai, T.: 1976, Magnetohydrodynamic interpretation of the motion of prominences. Publ. Astron. Soc. Japan 28, 177. ADS .

    ADS  Google Scholar 

  • Savcheva, A., Pariat, E., van Ballegooijen, A., Aulanier, G., DeLuca, E.: 2012, Sigmoidal active region on the Sun: Comparison of a magnetohydrodynamical simulation and a nonlinear force-free field model. Astrophys. J. 750, 15. ADS . DOI .

    Article  ADS  Google Scholar 

  • Savcheva, A.S., McKillop, S.C., McCauley, P.I., Hanson, E.M., DeLuca, E.E.: 2014, A new sigmoid catalog from hinode and the Solar Dynamics Observatory: Statistical properties and evolutionary histories. Solar Phys. 289, 3297. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B., Aulanier, G.: 2012, What are the physical mechanisms of eruptions and CMEs? Adv. Space Res. 49, 1598. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B., Archontis, V., Pariat, E.: 2014, Magnetic flux emergence along the solar cycle. Space Sci. Rev. 186, 227. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B., Aulanier, G., Démoulin, P., van Driel-Gesztelyi, L., Roudier, T., Nitta, N., Cauzzi, G.: 1997, Magnetic reconnection driven by emergence of sheared magnetic field. Astron. Astrophys. 325, 1213. ADS .

    ADS  Google Scholar 

  • Schmieder, B., Mein, N., Deng, Y., Dumitrache, C., Malherbe, J.-M., Staiger, J., Deluca, E.E.: 2004, Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Phys. 223, 119. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B., Bommier, V., Kitai, R., Matsumoto, T., Ishii, T.T., Hagino, M., Li, H., Golub, L.: 2008, Magnetic causes of the eruption of a quiescent filament. Solar Phys. 247, 321. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schmieder, B., Roudier, T., Mein, N., Mein, P., Malherbe, J.M., Chandra, R.: 2014, Proper horizontal photospheric flows in a filament channel. Astron. Astrophys. 564, A104. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Elmore, C., Kliem, B., Török, T., Title, A.M.: 2008, Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J. 674, 586. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167. ADS . DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. ADS . DOI .

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Moon, Y.-J., Dryer, M., Umapathy, S.: 2003, On the kinematic evolution of flare-associated CMEs. Solar Phys. 215, 185. ADS .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739. ADS . DOI .

    Article  ADS  Google Scholar 

  • Shibata, K.: 1996, New observational facts about solar flares from Yohkoh studies – Evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 17, 9. ADS .

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6. ADS . DOI .

    Article  ADS  Google Scholar 

  • Shiota, D., Kusano, K., Miyoshi, T., Shibata, K.: 2010, Magnetohydrodynamic modeling for a formation process of coronal mass ejections: Interaction between an ejecting flux rope and an ambient field. Astrophys. J. 718, 1305. ADS . DOI .

    Article  ADS  Google Scholar 

  • Steele, C.D.C., Priest, E.R.: 1989, The eruption of a prominence and coronal mass ejection which drive reconnection. Solar Phys. 119, 157. ADS . DOI .

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. ADS . DOI .

    Article  ADS  Google Scholar 

  • Subramanian, P., Dere, K.P.: 2001, Source regions of coronal mass ejections. Astrophys. J. 561, 372. ADS . DOI .

    Article  ADS  Google Scholar 

  • Sun, J.Q., Cheng, X., Guo, Y., Ding, M.D., Li, Y.: 2014, Dynamic evolution of an X-shaped structure above a trans-equatorial quadrupole solar active region group. ArXiv e-prints. arXiv .

  • Sun, X., Hoeksema, J.T., Liu, Y., Aulanier, G., Su, Y., Hannah, I.G., Hock, R.A.: 2013, Hot spine loops and the nature of a late-phase solar flare. Astrophys. J. 778, 139. ADS . DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712, 1410. ADS . DOI .

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS .

    ADS  Google Scholar 

  • Titov, V.S., Démoulin, P., Hornig, G.: 2003, Hyperbolic flux tubes in flaring magnetic configurations. Astron. Nachr. 324, 17. ADS .

    Article  Google Scholar 

  • Toriumi, S., Iida, Y., Bamba, Y., Kusano, K., Imada, S., Inoue, S.: 2013, The magnetic systems triggering the M6.6 class solar flare in NOAA active region 11158. Astrophys. J. 773, 128. ADS . DOI .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043. DOI .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2007, Numerical simulations of fast and slow coronal mass ejections. Astron. Nachr. 328, 743. DOI .

    Article  ADS  Google Scholar 

  • Török, T., Chandra, R., Pariat, E., Démoulin, P., Schmieder, B., Aulanier, G., Linton, M.G., Mandrini, C.H.: 2011, Filament interaction modeled by flux rope reconnection. Astrophys. J. 728, 65. DOI .

    Article  ADS  Google Scholar 

  • Ugarte-Urra, I., Warren, H.P., Winebarger, A.R.: 2007, The magnetic topology of coronal mass ejection sources. Astrophys. J. 662, 1293. ADS . DOI .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971. DOI .

    Article  ADS  Google Scholar 

  • van der Holst, B., Jacobs, C., Poedts, S.: 2007, Simulation of a breakout coronal mass ejection in the solar wind. Astrophys. J. Lett. 671, L77. ADS . DOI .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Démoulin, P., Mandrini, C.H., Harra, L., Klimchuk, J.A.: 2003, The long-term evolution of AR 7978: The scalings of the coronal plasma parameters with the mean photospheric magnetic field. Astrophys. J. 586, 579. DOI .

    Article  ADS  Google Scholar 

  • van Tend, W.: 1979, The onset of coronal transients. Solar Phys. 61, 89. DOI .

    Article  ADS  Google Scholar 

  • van Tend, W., Kuperus, M.: 1978, The development of coronal electric current systems in active regions and their relation to filaments and flares. Solar Phys. 59, 115. ADS . DOI .

    Article  ADS  Google Scholar 

  • Vargas Domínguez, S., MacTaggart, D., Green, L., van Driel-Gesztelyi, L., Hood, A.W.: 2012, On signatures of twisted magnetic flux tube emergence. Solar Phys. 278, 33. ADS . DOI .

    Article  ADS  Google Scholar 

  • Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys. 392, 699. ADS . DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Buzasi, D., Howard, R.A., Esfandiari, E.: 2002, Mass and energy properties of LASCO CMEs. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP 506, 91. ADS .

    Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. ADS . DOI .

    ADS  Google Scholar 

  • Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089.

    Article  ADS  Google Scholar 

  • Vršnak, B.: 1990, Eruptive instability of cylindrical prominences. Solar Phys. 129, 295. ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2001, Deceleration of coronal mass ejections. Solar Phys. 202, 173. ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089. ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., Rompolt, B.: 1991, Stability of prominences exposing helical-like patterns. Solar Phys. 136, 151. ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: Are there really two types of CMEs? Astron. Astrophys. 435, 1149. ADS . DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., Brajša, R., Zloch, F.: 1990, Oscillatory motions in an active prominence. Solar Phys. 127, 119. ADS . DOI

    Article  ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys. 225, 355. ADS . DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2013, Astrophys. J. Lett. 775, L46. ADS . DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2002, Observations of core fallback during coronal mass ejections. Astrophys. J. 567, 1211. ADS . DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: Observations. Living Rev. Solar Phys. 9, 3. ADS . DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Hundhausen, A.J.: 1987, Activity associated with the solar origin of coronal mass ejections. Solar Phys. 108, 383. ADS . DOI .

    Article  ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. ADS . DOI .

    Article  ADS  Google Scholar 

  • Wu, S.T., Zhang, T.X., Tandberg-Hanssen, E., Liu, Y., Feng, X., Tan, A.: 2004, Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration. Solar Phys. 225, 157. ADS . DOI .

    Article  ADS  Google Scholar 

  • Xia, C., Keppens, R., Guo, Y.: 2014, Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. Astrophys. J. 780, 130. ADS . DOI .

    Article  ADS  Google Scholar 

  • Yan, X.L., Xue, Z.K., Liu, J.H., Ma, L., Kong, D.F., Qu, Z.Q., Li, Z.: 2014, Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys. J. 782, 67. ADS . DOI .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., Cyr, O.C.St., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. ADS . DOI .

    Article  Google Scholar 

  • Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143. ADS . DOI .

    Article  ADS  Google Scholar 

  • Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: Continuous non-potential simulations. Solar Phys. 289, 631. ADS . DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. ADS . DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420. ADS . DOI .

    Article  ADS  Google Scholar 

  • Zhao, J., Li, H., Pariat, E., Schmieder, B., Guo, Y., Wiegelmann, T.: 2014, Temporal evolution of the magnetic topology of the NOAA active region 11158. Astrophys. J. 787, 88. ADS . DOI .

    Article  ADS  Google Scholar 

  • Žic, T., Vršnak, B., Skender, M.: 2007, The magnetic flux and self-inductivity of a thick toroidal current. J. Plasma Phys. 73, 741. DOI .

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys. J. 785, 88. ADS . DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B. Vršnak acknowledges financial support by Croatian Science Foundation under the project 6212 SOLSTEL and the European Commissions Seventh Framework Programme (FP7/2007-2013) under the grant agreement No. 284461 (eHEROES; http://soteria-space.eu/eheroes/html/ ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schmieder.

Additional information

Solar and Stellar Flares: Observations, Simulations, and Synergies

Guest Editors: Lyndsay Fletcher and Petr Heinzel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmieder, B., Aulanier, G. & Vršnak, B. Flare-CME Models: An Observational Perspective (Invited Review). Sol Phys 290, 3457–3486 (2015). https://doi.org/10.1007/s11207-015-0712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0712-1

Keywords

Navigation