Skip to main content
Log in

Methods and application of using detrital zircons to trace the provenance of loess

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The composition of single-grain detrital zircons is an effective provenance indicator of loess, and sheds new light on dust formation and transportation. Here we review the features of detrital zircons and their use as a provenance indicator, including internal structure, trace element, U-Pb age spectrum and Hf isotopic compositions, and present a case study from the Horqin sandy land and its surrounding loess. The loess samples have detrital zircon age peaks in range of 2600-2300, 2100-1600, and 600-100 Ma, of which the 2600-2300 Ma zircon grains mainly have positive ɛ Hf(t) values (−3.4–8.7), the 2100-1600 Ma zircon grains mainly have negative ɛ Hf(t) values (−10.1–6.8), and the 600-100 Ma zircon grains have a variable ɛ Hf(t) values ranging from −21 to 15.9. The detrital zircon signatures of the loess are similar to the Horqin sandy land, but clearly different from the Chinese Loess Plateau and central-western deserts, implying that the loess is transported mainly from the Horqin sandy land in the Last Glacial period. Comparing these with neighboring tectonic units, we found that zircon populations at 2600–2300, 2100–1600, and 600–100 Ma with negative ɛ Hf(t) values may come from the northeast North China Craton (NCC), and those at 600–100 Ma with positive ɛ Hf(t) values may come from the east Central Asian Orogenic Belt (CAOB). It is estimated that the two sources contribute equally to the Horqin sandy land and the surrounding loess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan Q Y, Pan B T, Gao H S, et al. Geochemical evidence of the Chinese loess provenance during the Late Pleistocene. Paleogeogr Paleoclimatol Paleoecol, 2008, 270: 53–58

    Article  Google Scholar 

  2. Ferrat M, Weiss D J, Strekopytov S, et al. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochim Cosmochim Acta, 2011, 75: 6374–6399

    Article  Google Scholar 

  3. Chen J, Li G J. Geochemical studies on the source region of Asian dust. Sci China Ser D-Earth Sci, 2011, 54: 1279–1301

    Article  Google Scholar 

  4. Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochim Cosmochim Acta, 2007, 71: 3904–3914

    Article  Google Scholar 

  5. Li F. Distribution characteristics of lead isotope in dust source areas and its trace significance in the North of China (in Chinese). J Desert Res, 2007, 27: 738–744

    Google Scholar 

  6. Pettke T, Lee D, Halliday A N, et al. Radiogenic Hf isotopic compositions of continental eolian dust from Asia, its variability and its implications for seawater Hf. Earth Planet Sci Lett, 2002, 202: 453–464

    Article  Google Scholar 

  7. Hattori Y, Suzuki K, Honda M, et al. Re-Os isotope systematics of the Taklimakan Desert sands, moraines and river sediments around the Taklimakan Desert, and of Tibetan soils. Geochim Cosmochim Acta, 2003, 67: 1195–1205

    Article  Google Scholar 

  8. Aleon J, Chaussidon M, Marty B, et al. Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochim Cosmochim Acta, 2002, 66: 3351–3365

    Article  Google Scholar 

  9. Sun Y B, Tada R, Chen J, et al. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz. Atmos Environ, 2007, 41: 8537–8548

    Article  Google Scholar 

  10. Li G J, Chen J, Chen Y, et al. Dolomite as a tracer for the source regions of Asian dust. J Geophys Res, 2007, 112: D17201

    Article  Google Scholar 

  11. Derbyshire E, Meng X M, Kemp R A. Provenance, transport and characteristics of modern eolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. J Arid Environ, 1998, 39: 497–516

    Article  Google Scholar 

  12. Lu H Y, Sun D H. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods. Catena, 2000, 40: 251–261

    Article  Google Scholar 

  13. Muhs D R, Bettis E A. Geochemical variations in Peoria Loess of Western Iowa indicate paleowinds of midcontinental North America during Last Glaciation. Quat Res, 2000, 53: 49–61

    Article  Google Scholar 

  14. Yang S, Ding Z. Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial-interglacial cycles. Earth Planet Sci Lett, 2008, 274: 499–510

    Article  Google Scholar 

  15. Liu T S. Loess and Environment. Beijing: China Ocean Press, 1985. 1–321

    Google Scholar 

  16. Ding Z L, Sun J M, Yang S L, et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim Cosmochim Acta, 2001, 65: 901–913

    Article  Google Scholar 

  17. Gallet S, Jahn B M, Morii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem Geol, 1996, 133: 67–88

    Article  Google Scholar 

  18. Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleo sol evolution during the last 140 ka. Chem Geol, 2001, 178: 71–94

    Article  Google Scholar 

  19. Moller A, O’Brien P J, Kennedy A, et al. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): Constraints for Pb diffusion in zircon. J Metamorph Geol, 2002, 20: 727–740

    Article  Google Scholar 

  20. Hanchar J M, Miller C F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem Geol, 1993, 110: 1–13

    Article  Google Scholar 

  21. Crofu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures. Rev Mineral Geochem, 2003, 53: 469–495

    Article  Google Scholar 

  22. Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps. In: Pagel M, Barbin V, Blanc P, et al, eds. Cathodoluminescence in Geoscience. Berlin: Springer-Verlag, 2000. 373–400

    Google Scholar 

  23. Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrys-tallization during plyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib Mineral Petrol, 1996, 122: 337–358

    Article  Google Scholar 

  24. Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 2004, 49: 1554–1569

    Google Scholar 

  25. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and link between U-Pb ages and metamorphism. Chem Geol, 2002, 184: 123–138

    Article  Google Scholar 

  26. Wu Y B, Chen D G, Xia Q K, et al. In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite: Trace-element characteristics of eclogite-facies metamorphic zircon. Chin Sci Bull, 2002, 47: 1398–1401

    Article  Google Scholar 

  27. Hidaka H, Shimizu H, Adachi M. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: Evidence for an Archean provenance. Chem Geol, 2002, 187: 278–293

    Article  Google Scholar 

  28. Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon: Trace elemnet composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602–622

    Article  Google Scholar 

  29. Whitehouse M J, Platt J P. Dating high-grade metamorphism constraints from rare-earth elements in zircons and garnet. Contrib Mineral Petrol, 2003, 145: 61–74

    Article  Google Scholar 

  30. Wu Y B, Chen D G, Xia Q K, et al. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS. Sci China Ser D-Earth Sci, 2003, 46: 1161–1170

    Article  Google Scholar 

  31. Hermann J, Rubatto D, Korsakov A. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol, 2001, 141: 66–82

    Article  Google Scholar 

  32. Krogh T E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta, 1973, 37: 485–494

    Article  Google Scholar 

  33. Ireland T R, Williams I S. Considerations in zircon geochronology by SIMS. Rev Mineral Geochem, 2003, 53: 215–241

    Article  Google Scholar 

  34. Kosler J, Sylvester P J. Present trends and future of zircon in geochronology: Laser ablation ICPMS. Rev Mineral Geochem, 2003, 53: 243–275

    Article  Google Scholar 

  35. Gehrels G E, Dickinson W R. Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. Am J Sci, 1995, 295: 18–48

    Article  Google Scholar 

  36. Vermeesch P. How many grains are needed for a provenance study? Earth Planet Sci Lett, 2004, 224: 441–451

    Article  Google Scholar 

  37. Sambridge M S, Compston W. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett, 1994, 128: 373–390

    Article  Google Scholar 

  38. Weislogel A L, Graham S A, Chang E Z, et al. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geol Soc Am Bull, 2010, 122: 2041–2062

    Article  Google Scholar 

  39. Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 2003, 53: 27–55

    Article  Google Scholar 

  40. Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon. Rev Mineral Geochem, 2003, 53: 327–341

    Article  Google Scholar 

  41. Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology (in Chinese). Acta Petrol Sin, 2007, 23: 185–220

    Google Scholar 

  42. Zhu Z D, Wu Z, Liu S, et al. An Outline on Chinese Deserts (in Chi nese). Beijing: Science Press, 1980. 1–107

    Google Scholar 

  43. Sun J M, Ding Z L, Liu T S. Desert distributions during the glacial maximum and climatic optimum: Example of China. Episodes, 1998, 21: 28–31

    Google Scholar 

  44. Zhao H, Lu Y C, Yin J H. SAR dationg of quartz and geochronology of Holocene sand dune activities in Horqin sandyfield, China (in Chinese). Nuclear Techniques, 2005, 28: 367–374

    Google Scholar 

  45. Qiu S W. Present situation, cause and comprehensive treatment of sandy desertification in western Northeast Plain, China (in Chinese). J Desert Res, 2004, 24: 124–128

    Google Scholar 

  46. Ge S W, Lu H Y, Zhou Y L, et al. The wet-dry variations of the Horqin sandy field by loess deposit of the late Quaternary (in Chinese). J Desert Res, 2006, 26: 869–874

    Google Scholar 

  47. Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 2003, 22: 1069

    Article  Google Scholar 

  48. Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci, 2006, 26: 207–224

    Article  Google Scholar 

  49. Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet Sci Lett, 2002, 203: 845–859

    Article  Google Scholar 

  50. Yang L R. Distribution and environment of deserts of eastern China since LGM (in Chinese). Dissertation for the Doctoral Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2007. 1–113

    Google Scholar 

  51. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand Geoanal Res, 2004, 28: 353–370

    Article  Google Scholar 

  52. Andersen T. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59–79

    Article  Google Scholar 

  53. Ludwig K R. User’s Manual for Isoplot Version 3.0: A Geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 2003. 4

  54. Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pb dating. Chin Sci Bull, 2004, 49: 1642–1648

    Google Scholar 

  55. Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105–126

    Article  Google Scholar 

  56. Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 2006, 246: 336–352

    Article  Google Scholar 

  57. Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 2000, 23: 82–92

    Google Scholar 

  58. Xie J, Wu F Y, Ding Z L. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance (in Chinese). Acta Petrol Sin, 2007, 23: 523–528

    Google Scholar 

  59. Peng P, Bleeker W, Ernst RE, et al. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China Craton: Evidence for a Neoproterozoic mantle plume. Lithos, 2011, 127: 210–221

    Article  Google Scholar 

  60. Steven T, Palk C, Carter A, et al. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Geol Soc Am Bull, 2010, 122: 1331–1344

    Article  Google Scholar 

  61. Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 2011, 39: 1031–1034

    Article  Google Scholar 

  62. Liu Y, Li X H, Li Q L, et al. Precise U-Pb zircon dating at <5 micron scale by Cameca 1280 SIMS using Gaussian illumination probe. J Anal At Spectrom, 2011, 26: 845–851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Yang, S. & Ding, Z. Methods and application of using detrital zircons to trace the provenance of loess. Sci. China Earth Sci. 55, 1837–1846 (2012). https://doi.org/10.1007/s11430-012-4428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4428-x

Keywords

Navigation