Skip to main content
Log in

Origin and geochemical characteristics of beryllium mineralization in the Zabara-Wadi El Gemal region, South Eastern Desert, Egypt

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Beryl is the commercial source of beryllium and several varieties of it are valued as a gemstone. To contribute to understanding the mechanism of beryl formation, we carried out detailed geological, petrographical, and geochemical investigations on beryl mineralization occurrences in the Zabara-Wadi El Gemal (Z-WG) region. This region is an NW–SE trending tract that includes six beryl-hosting areas. The green gem variety of beryl (emerald) is restricted to phlogopite schist, pegmatite, and quartz veins. Prismatic hexagonal emerald crystals are well-developed in phlogopite schist and pegmatite. The gem variety emerald examined is sodic and Cr-dominant. It contains high concentrations of chromophore transition elements ordering Cr (up to 1511 ppm) > V (up to 242 ppm) > Sc (up to 245 ppm), giving rise to its vivid green color, reflecting mafic–ultramafic source contribution. Among the investigated emeralds, the Sikait area contains the highest BeO (av. 10.76wt.%) concentration. The compositional variability of emeralds is most likely attributed to the contribution from the host rocks. This is revealed by the examined emerald mineralization, for instance; the Abu Rusheid area (one of the best areas exposing rare metal-bearing granitoids) possesses the highest average of trace and REEs concentrations. In contrast, Um Kabu emerald has the highest contents of Co (av. 20 ppm), Ni (av. 299 ppm), MgO (av. 8.2wt.%), Fe2O3 (av. 3.12wt.%), and CaO (avg. 3.4wt.%) relative to other areas, which may be linked to contribution of ultramafic rocks exposed there. The proposed mechanism we suggest for emerald genesis is metasomatic interaction between felsic (intrusions, that are enriched with K, Na, Be, Li, and B, with mafic–ultramafic rocks that are enriched in Cr, V, Mg, Fe, and Ca. This interaction is marked by the formation of phlogopite schist, the growth of emerald crystals, and desilicated pegmatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The present authors declare that the work data and materials are available.

References

  • Abdalla HM, Mohamed FH (1999) Mineralogical and geochemical investigation of emerald and beryl mineralisation, Pan-African belt of Egypt: Genetic and exploration aspects. J Afr Earth Sci. 28:581–598. https://doi.org/10.1016/S0899-5362(99)00033-0

    Article  CAS  Google Scholar 

  • Alexandrov P, Giuliani G, Zimmermann J-L (2001) Mineralogy, age, and fluid geochemistry of the Rila emerald deposit. Bulgaria Econ Geol. 96:1469–1476. https://doi.org/10.2113/gsecongeo.96.6.1469

    Article  CAS  Google Scholar 

  • Arif M, Fallick AE, Moon CJ (1996) The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: A stable-isotope investigation. Miner Deposita. 31:255–268. https://doi.org/10.1007/BF02280790

    Article  CAS  Google Scholar 

  • Aurisicchio C, Conte AM, Medeghini L et al (2018) Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol Rev. 94:351–366. https://doi.org/10.1016/j.oregeorev.2018.02.001

    Article  Google Scholar 

  • Beal K-L, Lentz DR (2012) Aquamarine beryl from Zealand Station, Canada: A mineralogical and stable isotope study. J Geosci. https://doi.org/10.3190/jgeosci.059

    Article  Google Scholar 

  • Daneshvar N, Azizi H, Asahara Y et al (2021) Geochemistry and genesis of beryl crystals in the LCT pegmatite type, Ebrahim-Attar mountain. Western Iran Minerals. 11:717. https://doi.org/10.3390/min11070717

    Article  CAS  Google Scholar 

  • El Dougdoug AA, Takia MA, Surour AA, et al (1997) Mineralogy and origin of Wadi Sikait emerald, S.E. Desert, Egypt. In: The 3rd Conf. On Geochemistry. Alexandria Univ., Egypt.

  • Giuliani G, Groat LA (2019) Geology of corundum and emerald gem deposits: A review. Gems Gemol. https://doi.org/10.5741/GEMS.55.4.464

    Article  Google Scholar 

  • Giuliani G, Silva LJHD, Couto P (1990) Origin of emerald deposits of Brazil. Miner Deposita. 25:57–64. https://doi.org/10.1007/BF03326384

    Article  CAS  Google Scholar 

  • Giuliani G, Groat LA, Marshall D et al (2019) Emerald deposits: A review and enhanced classification. Minerals. 9:105. https://doi.org/10.3390/min9020105

    Article  CAS  Google Scholar 

  • Grew ES (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Rev Mineral Geochem. 50:487–549. https://doi.org/10.2138/rmg.2002.50.12

    Article  CAS  Google Scholar 

  • Groat LA, Marshall DD, Giuliani G et al (2002) Mineralogical and geochemical study of the Regal Ridge emerald showing, southeastern Yukon. Can Mineral. 40:1313–1338. https://doi.org/10.2113/gscanmin.40.5.1313

    Article  CAS  Google Scholar 

  • Groat LA, Giuliani G, Marshall DD, Turner D (2008) Emerald deposits and occurrences: A review. Ore Geol Rev. 34:87–112. https://doi.org/10.1016/j.oregeorev.2007.09.003

    Article  Google Scholar 

  • Grundmann G, Giuliani G (2002) Emeralds of the world. Extra Lapis English. 2:24–35.

    Google Scholar 

  • Grundmann G, Morteani G (1989) Emerald mineralization during regional metamorphism; the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Econ Geol. 84:1835–1849. https://doi.org/10.2113/gsecongeo.84.7.1835

    Article  CAS  Google Scholar 

  • Hamdy MM, Lasheen ESR, Abdelwahab W (2022) Gold-bearing listwaenites in ophiolitic ultramafics from the Eastern Desert of Egypt: Subduction zone-related alteration of Neoproterozoic mantle? J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2022.104574

    Article  Google Scholar 

  • Hammarstrom JM (1989) Mineral chemistry of emeralds and some associated minerals from Pakistan and Afghanistan: An electron microprobe study. In: Kazmi AH, Snee LW (eds) Emeralds of Pakistan: Geology, gemology and genesis. Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • Harrell JA (2004) Archaeological geology of the world’s first emerald mine. Geosci Can. 31:69–74.

    Google Scholar 

  • Hassan MA, El Shatoury HM (1976) Beryl occurrences in Egypt. Min Geol. 26:253–262.

    Google Scholar 

  • Hölscher A, Schreyer W (1989) A new synthetic hexagonal BeMg-cordierite, Mg2[Al2BeSi6018], and its relationship to Mg-cordierite. Eur J Mineral. 1:21–38. https://doi.org/10.1127/ejm/01/1/0021

    Article  Google Scholar 

  • Ibrahim ME, Saleh GM, Ibrahim IH, et al (2004) Uranium and associated rare metals potentialities of Abu Rusheid brecciated shear zone II, south Eastern Desert, Egypt.

  • Johnson DM, Johnson PR, Conrey RM (1999) XRF Analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-Ray Anal. 41:843–867.

    CAS  Google Scholar 

  • Kazmi AH, Snee LW (1989) Geology of world emerald deposits: A brief review. In: Kazmi AH, Snee LW (eds) Emeralds of Pakistan: Geology, gemology, and genesis. Springer, New York.

    Chapter  Google Scholar 

  • Khaleal FM, Oraby F, Abdalla F, Hassan M (2008) Natural resources assessment of Wadi El-Gemal Basin, Red Sea. Egypt Catrina Int J Environ Sci. 3:131–139.

    Google Scholar 

  • Khaleal FM, El Bialy MZ, M SG, et al (2019) The Geology, geochemistry and mineralogy of beryl mineralization in Zabara area, South Eastern Desert. Egypt Int J Min Sci. 5:18–34.

    Google Scholar 

  • Khaleal FM, Lentz DR, Hall DC (2022a) Mineral chemistry and genesis of emerald and beryl mineralization in the south Eastern Desert of Egypt. Egypt J Chem. 65:601–623. https://doi.org/10.21608/ejchem.2022.113700.5166

    Article  Google Scholar 

  • Khaleal FM, Saleh GM, Lasheen ESR, Lentz DR (2022b) Occurrences and genesis of emerald and other beryls mineralization in Egypt: A review. Phys Chem Earth Parts ABC. 128:103266. https://doi.org/10.1016/j.pce.2022.103266

    Article  Google Scholar 

  • Khaleal FM, El-Bialy MZ, Saleh GM et al (2023a) Assessing environmental and radiological impacts and lithological mapping of beryl-bearing rocks in Egypt using high-resolution sentinel-2 remote sensing images. Sci Rep. 13:11497. https://doi.org/10.1038/s41598-023-38298-0

    Article  CAS  Google Scholar 

  • Khaleal FM, El-Bialy MZ, Saleh GM et al (2023b) Environmental risk assessment of naturally radioactive beryl-bearing rocks Sinai and Eastern Desert Egypt. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-09092-z

    Article  Google Scholar 

  • Khaleal FM, Tahoon MA, Saleh GM et al (2023c) Dolphin-shaped island: exploring the natural resources and radiological hazards of Wadi El Gemal Island. Mar Pollut Bull. 194:115367. https://doi.org/10.1016/j.marpolbul.2023.115367

    Article  CAS  Google Scholar 

  • Lasheen ESR, Saleh GM, Khaleal FM, Alwetaishi M (2021) Petrogenesis of neoproterozoic ultramafic rocks, Wadi Ibib-Wadi Shani, South Eastern Desert, Egypt: constraints from Whole Rock and mineral chemistry. Appl Sci. 11:10524. https://doi.org/10.3390/app112210524

    Article  CAS  Google Scholar 

  • Lasheen ESR, Awad HA, Ene A et al (2023a) Mineralogical constituents and radioactivity analysis of commercial granitic ornamental stones: Assessing suitability and radiation safety. J Radiat Res Appl Sci. 16:100618. https://doi.org/10.1016/j.jrras.2023.100618

    Article  CAS  Google Scholar 

  • Lasheen ESR, Mohamed WH, Elyaseer MH et al (2023b) Geochemical and remote sensing integrated with satellite gravity data of Darhib and Atshan talc deposits, South Eastern Desert. Egypt Sci Rep. 13:9108. https://doi.org/10.1038/s41598-023-31398-x

    Article  CAS  Google Scholar 

  • Lasheen ESR, Elyaseer MH, Mohamed WH et al (2024) Economic feasibility of Gabal Um Takha leucogranitic intrusion, South Sinai, Egypt: Integrated remote sensing, geochemical, aeromagnetic, and geotechnical approach. Phys Chem Earth Parts ABC. 133:103531. https://doi.org/10.1016/j.pce.2023.103531

    Article  Google Scholar 

  • Panjikar J, Ramchandran KT, Balu K (1997) New emerald deposits from southern India. Aust Gemmol. 19:427–432.

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Treatise on Geochemistry. Elsevier. pp 1–64.

  • Saleh GM, Kamar MS, Lasheen ESR et al (2022) Whole rock and mineral chemistry of the rare metals-bearing mylonitic rocks Abu Rusheid borehole southeastern Desert Egypt. J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2022.104736

    Article  Google Scholar 

  • Saleh GM, Kamh SZ, Abdalla F et al (2024) ِA new occurrence of rift-related damtjernite (ultramafic) lamprophyre, Gebel Anweiyib area, Arabian Nubian shield: Insights from bulk rock geochemistry and remote sensing data analysis. Phys Chem Earth Parts ABC. 133:103530. https://doi.org/10.1016/j.pce.2023.103530

    Article  Google Scholar 

  • Saleh GM (1997) The potentiality of uranium occurrences in Wadi Nugrus area, south Eastern Desert, Egypt. Ph. D. Thesis, Mansoura.

  • Schwarz D (1991) Australian emeralds. Aust Gemmol. 17:488–497.

    Google Scholar 

  • Schwarz D, Giuliani G (2001) Emerald deposits-a review. Aust Gemmol. 21:17–23.

    Google Scholar 

  • El Shatoury HM (1970) Preliminary report on prospecting for mineral deposits of acidic type at Homret Mikpid, Eastern Desert, Egypt. Internal report, United Nation Development Program in Egypt. Assessment of Mineral Potential of Aswan Region. Cairo, Egypt.

  • Sinkankas J (1981) Emerald and other beryls. Chilton Book Co., Radnor, Pa.

    Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci. 285:97–127. https://doi.org/10.2475/ajs.285.2.97

    Article  CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ. 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Suo Q, Shen P, Luo Y et al (2022) Beryl mineralogy and fluid inclusion constraints on the be enrichment in the Dakalasu No.1 Pegmatite Altai NW China. Minerals. 12:450. https://doi.org/10.3390/min12040450

    Article  CAS  Google Scholar 

  • Surour AA, Takla MA, Omar SAM (2002) EPR spectra and age determination of beryl from the Eastern Desert of Egypt. Ann Geol Surv Egypt xxv.

  • Surour AA (1993) Petrology, geochemistry and mineralization of some ultramafic rocks, Egypt. Unpublished. Ph.D. T, Cairo.

  • Surour AA (2003) Genesis of bismuth and beryllium mineralization at Wadi Ghazala area (SE Sinai, Egypt): Criteria from the mineral chemistry and fluid inclusions. Sci J Fac Sci Minoufiya Univ. 261–308.

  • Takla MA, Surour AA, Omar SAM (2003) Mapping source of beryllium and genesis of some beryl occurrences in the Eastern Desert of Egypt. Ann Geol Surv Egypt. 76:153–182.

    Google Scholar 

  • Taylor SR, McClennan S (1985) The continental crust : Its composition and evolution : An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific, Oxford.

    Google Scholar 

  • Thomas R, Webster JD, Davidson P (2011) Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite–pegmatite systems. Contrib Mineral Petrol. 161:483–495. https://doi.org/10.1007/s00410-010-0544-9

    Article  CAS  Google Scholar 

  • Vapnik Y, Moroz I (2000) Fluid inclusions in emerald from the Jos complex (Central Nigeria). Schweiz Mineral Petrogr Mitteilungen. 80:117–129.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to conceptualization, writing the draft manuscript, data processing, and software manipulation. They read and agree to published this version of the manuscript.

Corresponding author

Correspondence to El Saeed R. Lasheen.

Ethics declarations

Conflict of interest

The present authors declare that the work has no competing interests.

Consent for publication

The present authors declare that the work is consent for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 KB)

Supplementary file2 (DOCX 861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, G.M., Khaleal, F.M., El-Bialy, M.Z. et al. Origin and geochemical characteristics of beryllium mineralization in the Zabara-Wadi El Gemal region, South Eastern Desert, Egypt. Acta Geochim (2024). https://doi.org/10.1007/s11631-024-00698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11631-024-00698-y

Keywords

Navigation