Skip to main content
Log in

LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cardiac fibrosis is one of the crucial pathological factors in the heart, and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure. However, the exact molecular mechanism of cardiac fibrosis remains unclear. In the present study, we show that a novel lncRNA that we named cardiac fibrosis-associated regulator (CFAR) is a profibrotic factor in the heart. CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts, thereby ameliorating cardiac fibrosis. Moreover, CFAR acted as a ceRNA sponge for miR-449a-5p and derepressed the expression of LOXL3, which we experimentally established as a target gene of miR-449a-5p. In contrast to CFAR, miR-449a-5p was found to be significantly downregulated in cardiac fibrosis, and artificial knockdown of miR-449a-5p exacerbated fibrogenesis, whereas overexpression of miR-449a-5p impeded fibrogenesis. Furthermore, we found that LOXL3 mimicked the fibrotic factor TGF-β1 to promote cardiac fibrosis by activating mTOR. Collectively, our study established CFAR as a new profibrotic factor acting through a novel miR-449a-5p/LOXL3/mTOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, N., Perbellini, F., and Thum, T. (2020). Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 115, 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, B., Ma, W., Ding, F., Zhang, L., Huang, Q., Wang, X., Hua, B., Xu, J., Li, J., Bi, C., et al. (2018). The long noncoding RNA CAREL controls cardiac regeneration. J Am College Cardiol 72, 534–550.

    Article  Google Scholar 

  • Che, H., Wang, Y., Li, H., Li, Y., Sahil, A., Lv, J., Liu, Y., Yang, Z., Dong, R., Xue, H., et al. (2020). Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy. FASEB J 34, 5282–5298.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Yang, A., Jia, J., Popov, Y.V., Schuppan, D., and You, H. (2020). Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology 72, 729–741.

    Article  CAS  PubMed  Google Scholar 

  • Findlay, A.D., Foot, J.S., Buson, A., Deodhar, M., Jarnicki, A.G., Hansbro, P.M., Liu, G., Schilter, H., Turner, C.I., Zhou, W., et al. (2019). Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl oxidase-like 2/3. J Med Chem 62, 9874–9889.

    Article  CAS  PubMed  Google Scholar 

  • Glenfield, C., and McLysaght, A. (2018). Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35, 2886–2899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., Peng, Y., Liu, T., Yang, B., Shan, H., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99, 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Halushka, P.V., Goodwin, A.J., and Halushka, M.K. (2019). Opportunities for microRNAs in the crowded field of cardiovascular biomarkers. Annu Rev Pathol Mech Dis 14, 211–238.

    Article  CAS  Google Scholar 

  • Hinderer, S., and Schenke-Layland, K. (2019). Cardiac fibrosis—a short review of causes and therapeutic strategies. Adv Drug Deliver Rev 146, 77–82.

    Article  CAS  Google Scholar 

  • Jones, M.G., Andriotis, O.G., Roberts, J.J., Lunn, K., Tear, V.J., Cao, L., Ask, K., Smart, D.E., Bonfanti, A., Johnson, P., et al. (2018). Nanoscale dysregulation of collagen structure-function disrupts mechanohomeostasis and mediates pulmonary fibrosis. eLife 7, e36354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jourdan-Le Saux, C., Tomsche, A., Ujfalusi, A., Jia, L., and Csiszar, K. (2001). Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein. Genomics 74, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Kraft-Sheleg, O., Zaffryar-Eilot, S., Genin, O., Yaseen, W., Soueid-Baumgarten, S., Kessler, O., Smolkin, T., Akiri, G., Neufeld, G., Cinnamon, Y., et al. (2016). Localized LoxL3-dependent fibronectin oxidation regulates myofiber stretch and integrin-mediated adhesion. Dev Cell 36, 550–561.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, Y., Fu, X., and Lu, Z. (2018). Long non-coding RNA NEAT1 promoted ovarian cancer cells’ metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci 109, 2188–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen, J.M., and Thum, T. (2016). Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12, 360–373.

    Article  CAS  PubMed  Google Scholar 

  • Micheletti, R., Plaisance, I., Abraham, B.J., Sarre, A., Ting, C.C., Alexanian, M., Maric, D., Maison, D., Nemir, M., Young, R.A., et al. (2017). The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9, eaai9118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan, J.T., Fink, G.R., and Bartel, D.P. (2019). Excised linear introns regulate growth in yeast. Nature 565, 606–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morine, K.J., Qiao, X., York, S., Natov, P.S., Paruchuri, V., Zhang, Y., Aronovitz, M.J., Karas, R.H., and Kapur, N.K. (2018). Bone morphogenetic protein 9 reduces cardiac fibrosis and improves cardiac function in heart failure. Circulation 138, 513–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie, X., Fan, J., Li, H., Yin, Z., Zhao, Y., Dai, B., Dong, N., Chen, C., and Wang, D.W. (2018). miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther-Nucleic Acids 12, 254–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perl, A. (2016). Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12, 169–182.

    Article  CAS  PubMed  Google Scholar 

  • Piccoli, M.T., Gupta, S.K., Viereck, J., Foinquinos, A., Samolovac, S., Kramer, F.L., Garg, A., Remke, J., Zimmer, K., Batkai, S., et al. (2017). Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121, 575–583.

    Article  CAS  PubMed  Google Scholar 

  • Ponnusamy, M., Liu, F., Zhang, Y.H., Li, R.B., Zhai, M., Liu, F., Zhou, L. Y., Liu, C.Y., Yan, K.W., Dong, Y.H., et al. (2019). Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684.

    Article  CAS  PubMed  Google Scholar 

  • Ricupero, D.A., Poliks, C.F., Rishikof, D.C., Cuttle, K.A., Kuang, P.P., and Goldstein, R.H. (2001). Phosphatidylinositol 3-kinase-dependent stabilization of α1 (I) collagen mRNA in human lung fibroblasts. Am J Physiol-Cell Physiol 281, C99–C105.

    Article  CAS  PubMed  Google Scholar 

  • Santamaría, P.G., Floristán, A., Fontanals-Cirera, B., Vázquez-Naharro, A., Santos, V., Morales, S., Yuste, L., Peinado, H., García-Gómez, A., Portillo, F., et al. (2018). Lysyl oxidase-like 3 is required for melanoma cell survival by maintaining genomic stability. Cell Death Differ 25, 935–950.

    Article  PubMed  Google Scholar 

  • Sarropoulos, I., Marin, R., Cardoso-Moreira, M., and Kaessmann, H. (2019). Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571, 510–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2021). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64, 22–50.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach, H., Nishida, N., Calin, G.A., and Pantel, K. (2014). Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11, 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Seo, H.H., Lee, S., Lee, C.Y., Lee, J., Shin, S., Song, B.W., Kim, I.K., Choi, J.W., Lim, S., Kim, S.W., et al. (2019). Multipoint targeting of TGF-β/Wnt transactivation circuit with microRNA 384–5p for cardiac fibrosis. Cell Death Differ 26, 1107–1123.

    Article  CAS  PubMed  Google Scholar 

  • Shegogue, D., and Trojanowska, M. (2004). Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J Biol Chem 279, 23166–23175.

    Article  CAS  PubMed  Google Scholar 

  • Shih, Y.C., Chen, C.L., Zhang, Y., Mellor, R.L., Kanter, E.M., Fang, Y., Wang, H.C., Hung, C.T., Nong, J.Y., Chen, H.J., et al. (2018). Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redoxsensitive cardiac fibroblast activation. Circ Res 122, 1052–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee, A.R., and Blenis, J. (2005). mTOR, translational control and human disease. Semin Cell Dev Biol 16, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Thum, T., and Condorelli, G. (2015). Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116, 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Viereck, J., Bührke, A., Foinquinos, A., Chatterjee, S., Kleeberger, J.A., Xiao, K., Janssen-Peters, H., Batkai, S., Ramanujam, D., Kraft, T., et al. (2020). Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 41, 3462–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, Y., Chen, R., Qu, L., and Cao, X. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468.

    Article  PubMed  Google Scholar 

  • Yang, M., Woolfenden, H.C., Zhang, Y., Fang, X., Liu, Q., Vigh, M.L., Cheema, J., Yang, X., Norris, M., Yu, S., et al. (2020). Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res 48, 8767–8781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Liu, H., Gao, W., Zhang, L., Ye, Y., Yuan, L., Ding, Z., Wu, J., Kang, L., Zhang, X., et al. (2018). MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress.. Theranostics 8, 2565–2582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Fu, X., Kataoka, M., Liu, N., Wang, Y., Gao, F., Liang, T., Dong, X., Pei, J., Hu, X., et al. (2021). Long noncoding RNA Cfast regulates cardiac fibrosis. Mol Ther-Nucleic Acids 23, 377–392.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Jiang, Y., Guo, X., Zhang, B., Wu, J., Sun, J., Liang, H., Shan, H., Zhang, Y., Liu, J., et al. (2019). Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 23, 7685–7698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82070240, 82073844, 82070236, 82270246), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2020169), and Harbin Medical University Marshal Initiative Funding (HMUMIF-21026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Liu, Rong Zhang or Chaoqian Xu.

Additional information

Compliance and ethics The authors declare that they have no conflict of interest.

Supplementsry Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, B., Wang, X. et al. LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis. Sci. China Life Sci. 66, 783–799 (2023). https://doi.org/10.1007/s11427-021-2132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2132-9

Keywords

Navigation