Skip to main content
Log in

LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy (DCM) is a common complication in diabetic patients. The molecular mechanisms of DCM remain to be fully elucidated. The intronic long noncoding RNA of DACH1 (lncDACH1) has been demonstrated to be closely associated with heart failure and cardiac regeneration. In this study, we investigated the role of lncDACH1 in DCM and the underlying molecular mechanisms. The expression of lncDACH1 was increased in DCM hearts and in high glucose-treated cardiomyocytes. Knockout of lncDACH1 reduced mitochondrial oxidative stress, cell apoptosis, cardiac fibrosis and hypertrophy, and improved cardiac function in DCM mice. Overexpression of lncDACH1 exacerbated mitochondria-derived reactive oxygen species (ROS) level and apoptosis, decreased activity of manganese superoxide dismutase (Mn-SOD); while silencing of lncDACH1 attenuated ROS production, mitochondrial dysfunction, cell apoptosis, and increased the activity of Mn-SOD in cardiomyocytes treated with high glucose. LncDACH1 directly bound to sirtuin3 (SIRT3) and facilitated its degradation by ubiquitination, therefore promoting mitochondrial oxidative injury and cell apoptosis in mouse hearts. In addition, SIRT3 silencing abrogated the protective effects of lncDACH1 deficiency in cardiomyocytes. In summary, lncDACH1 aggravates DCM by promoting mitochondrial oxidative stress and cell apoptosis via increasing ubiquitination-mediated SIRT3 degradation in mouse hearts. Inhibition of lncDACH1 represents a novel therapeutic strategy for the intervention of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bugger, H., Witt, C.N., and Bode, C. (2016). Mitochondrial sirtuins in the heart. Heart Fail Rev 21, 519–528.

    Article  CAS  Google Scholar 

  • Cai, B., Zhang, Y., Zhao, Y., Wang, J., Li, T., Zhang, Y., Jiang, Y., Jin, X., Xue, G., Li, P., et al. (2019). Long noncoding RNA-DACH1 (dachshund homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension 74, 833–842.

    Article  CAS  Google Scholar 

  • Cai, B., Ma, W., Ding, F., Zhang, L., Huang, Q., Wang, X., Hua, B., Xu, J., Li, J., Bi, C., et al. (2018). The long noncoding RNA carel controls cardiac regeneration. J Am Coll Cardiol 72, 534–550.

    Article  Google Scholar 

  • Cai, B., Ma, W., Wang, X., Sukhareva, N., Hua, B., Zhang, L., Xu, J., Li, X., Li, S., Liu, S., et al. (2020). Targeting lncdach1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ 27, 2158–2175.

    Article  CAS  Google Scholar 

  • Chen, H., and Shan, G. (2020). The physiological function of long-noncoding RNAs. Noncoding RNA Res 5, 178–184.

    Article  CAS  Google Scholar 

  • Dikalova, A.E., Itani, H.A., Nazarewicz, R.R., McMaster, W.G., Flynn, C. R., Uzhachenko, R., Fessel, J.P., Gamboa, J.L., Harrison, D.G., and Dikalov, S.I. (2017). Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121, 564–574.

    Article  CAS  Google Scholar 

  • Feng, Y., Xu, W., Zhang, W., Wang, W., Liu, T., and Zhou, X. (2019). LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics 9, 4558–4566.

    Article  CAS  Google Scholar 

  • Gao, J., Feng, Z., Wang, X., Zeng, M., Liu, J., Han, S., Xu, J., Chen, L., Cao, K., Long, J., et al. (2018). Sirt3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 25, 229–240.

    Article  CAS  Google Scholar 

  • Huynh, K., Bernardo, B.C., McMullen, J.R., and Ritchie, R.H. (2014). Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142, 375–415.

    Article  CAS  Google Scholar 

  • Jia, G., Hill, M.A., and Sowers, J.R. (2018). Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ Res 122, 624–638.

    Article  CAS  Google Scholar 

  • Koentges, C., Pfeil, K., Meyer-Steenbuck, M., Lother, A., Hoffmann, M. M., Odening, K.E., Hein, L., Bode, C., and Bugger, H. (2016). Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol 94, 72–80.

    Article  CAS  Google Scholar 

  • Li, X., Luo, S., Zhang, J., Yuan, Y., Jiang, W., Zhu, H., Ding, X., Zhan, L., Wu, H., Xie, Y., et al. (2019). LncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids 17, 297–309.

    Article  CAS  Google Scholar 

  • Long, B., Yang, X., Xu, X., Li, X., Xu, X., Zhang, X., and Zhang, S. (2020). Long noncoding RNA ASB16-AS1 inhibits adrenocortical carcinoma cell growth by promoting ubiquitination of RNA-binding protein HuR. Cell Death Dis 11, 995.

    Article  CAS  Google Scholar 

  • Luo, S., Zhang, M., Wu, H., Ding, X., Li, D., Dong, X., Hu, X., Su, S., Shang, W., Wu, J., et al. (2021). Sail: A new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 116, 15.

    Article  CAS  Google Scholar 

  • Marwick, T.H., Ritchie, R., Shaw, J.E., and Kaye, D. (2018). Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71, 339–351.

    Article  Google Scholar 

  • Pi, H., Xu, S., Reiter, R.J., Guo, P., Zhang, L., Li, Y., Li, M., Cao, Z., Tian, L., Xie, J., et al. (2015). Sirt3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11, 1037–1051.

    Article  CAS  Google Scholar 

  • Piccoli, M.T., Gupta, S.K., Viereck, J., Foinquinos, A., Samolovac, S., Kramer, F.L., Garg, A., Remke, J., Zimmer, K., Batkai, S., et al. (2017). Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121, 575–583.

    Article  CAS  Google Scholar 

  • Qu, X., Du, Y., Shu, Y., Gao, M., Sun, F., Luo, S., Yang, T., Zhan, L., Yuan, Y., Chu, W., et al. (2017). Miat is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7, 42657.

    Article  CAS  Google Scholar 

  • Rashid, F., Shah, A., and Shan, G. (2016). Long non-coding RNAs in the cytoplasm. Genomics Proteomics BioInf 14, 73–80.

    Article  Google Scholar 

  • Song, S., Ding, Y., Dai, G., Zhang, Y., Xu, M., Shen, J., Chen, T., Chen, Y., and Meng, G. (2021). Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 42, 230–241.

    Article  CAS  Google Scholar 

  • Sultana, M.R., Bagul, P.K., Katare, P.B., Anwar Mohammed, S., Padiya, R., and Banerjee, S.K. (2016). Garlic activates Sirt-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes. Life Sci 164, 42–51.

    Article  CAS  Google Scholar 

  • Tao, R., Coleman, M.C., Pennington, J.D., Ozden, O., Park, S.H., Jiang, H., Kim, H.S., Flynn, C.R., Hill, S., Hayes McDonald, W., et al. (2010). Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40, 893–904.

    Article  CAS  Google Scholar 

  • Wang, C., Liu, G., Yang, H., Guo, S., Wang, H., Dong, Z., Li, X., Bai, Y., and Cheng, Y. (2021). MALAT1-mediated recruitment of the histone methyltransferase EZH2 to the microRNA-22 promoter leads to cardiomyocyte apoptosis in diabetic cardiomyopathy. Sci Total Environ 766, 142191.

    Article  CAS  Google Scholar 

  • Wang, K., Liu, F., Zhou, L.Y., Long, B., Yuan, S.M., Wang, Y., Liu, C.Y., Sun, T., Zhang, X.J., and Li, P.F. (2014). The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114, 1377–1388.

    Article  CAS  Google Scholar 

  • Wang, Z.Q., He, C.Y., Hu, L., Shi, H.P., Li, J.F., Gu, Q.L., Su, L.P., Liu, B. Y., Li, C., and Zhu, Z. (2017). Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett 408, 10–21.

    Article  CAS  Google Scholar 

  • Xie, X., Wang, L., Zhao, B., Chen, Y., and Li, J. (2017). SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts. Life Sci 177, 41–48.

    Article  CAS  Google Scholar 

  • Xu, W., Deng, B., Lin, P., Liu, C., Li, B., Huang, Q., Zhou, H., Yang, J., and Qu, L. (2020). Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci 63, 529–542.

    Article  CAS  Google Scholar 

  • Yang, F., Qin, Y., Wang, Y., Li, A., Lv, J., Sun, X., Che, H., Han, T., Meng, S., Bai, Y., et al. (2018). LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem 50, 1230–1244.

    Article  CAS  Google Scholar 

  • Yu, B., and Shan, G. (2016). Functions of long noncoding RNAs in the nucleus. Nucleus 7, 155–166.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jiao, L., Sun, L., Li, Y., Gao, Y., Xu, C., Shao, Y., Li, M., Li, C., Lu, Y., et al. (2018). LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res 122, 1354–1368.

    Article  CAS  Google Scholar 

  • Zheng, J., Huang, X., Tan, W., Yu, D., Du, Z., Chang, J., Wei, L., Han, Y., Wang, C., Che, X., et al. (2016). Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet 48, 747–757.

    Article  CAS  Google Scholar 

  • Zhou, Y., Chung, A.C.K., Fan, R., Lee, H.M., Xu, G., Tomlinson, B., Chan, J.C.N., and Kong, A.P.S. (2017). Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction. Antioxid Redox Signal 27, 962–976.

    Article  CAS  Google Scholar 

  • Zhuo, C., Jiang, R., Lin, X., and Shao, M. (2017). LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8, 1429–1437.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81730012, 81872871, and 82070283) and CAMS Innovation Fund for Medical Sciences (2020-I2M-5-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenwei Pan or Yanjie Lu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, D., Dong, X. et al. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci. China Life Sci. 65, 1198–1212 (2022). https://doi.org/10.1007/s11427-021-1982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1982-8

Keywords

Navigation