Skip to main content
Log in

Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells

  • Research Paper
  • Special Topic: Noncoding RNA: from dark matter to bright star
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The roles of concealed microproteins encoded by long noncoding RNAs (lncRNAs) are gradually being exposed, but their functions in tumorigenesis are still largely unclear. Here, we identify and characterize a conserved 99-amino acid microprotein named KRASIM that is encoded by the putative lncRNA NCBP2-AS2. KRASIM is differentially expressed in normal hepatocytes and hepatocellular carcinoma (HCC) cells and can suppress HCC cell growth and proliferation. Mechanistically, KRASIM interacts and colocalizes with the KRAS protein in the cytoplasm of human HuH-7 hepatoma cells. More importantly, the overexpression of KRASIM decreases the KRAS protein level, leading to the inhibition of ERK signaling activity in HCC cells. These results demonstrate a novel microprotein repressor of the KRAS pathway for the first time and provide new insights into the regulatory mechanisms of oncogenic signaling and HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M., Anderson, K.M., Chang, C.L., Makarewich, C.A., Nelson, B.R., McAnally, J.R., Kasaragod, P., Shelton, J.M., Liou, J., Bassel-Duby, R., et al. (2015). A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards, A. (2003). GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. BioChim Biophysica Acta (BBA) — Rev Cancer 1603, 47–82.

    CAS  Google Scholar 

  • Calviello, L., Mukherjee, N., Wyler, E., Zauber, H., Hirsekorn, A., Selbach, M., Landthaler, M., Obermayer, B., and Ohler, U. (2016). Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13, 165–170.

    CAS  PubMed  Google Scholar 

  • Choi, S.W., Kim, H.W., and Nam, J.W. (2018). The small peptide world in long noncoding RNAs. Brief Bioinform 81.

  • Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci Signal 2004(250), re13.

    Google Scholar 

  • Deng, P., Liu, S., Nie, X., Weining, S., and Wu, L. (2018). Conservation analysis of long non-coding RNAs in plants. Sci China Life Sci 61, 190–198.

    CAS  PubMed  Google Scholar 

  • Dietrich, P., Koch, A., Fritz, V., Hartmann, A., Bosserhoff, A.K., and Hellerbrand, C. (2018). Wild type Kirsten rat sarcoma is a novel microRNA-622-regulated therapeutic target for hepatocellular carcinoma and contributes to sorafenib resistance. Gut 67, 1328–1341.

    CAS  PubMed  Google Scholar 

  • Dong, B., Liang, Z., Chen, Z., Li, B., Zheng, L., Yang, J., Zhou, H., and Qu, L. (2018). Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Sci China Life Sci 61, 999–1009.

    CAS  PubMed  Google Scholar 

  • Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11–22.

    CAS  PubMed  Google Scholar 

  • Eddy, S.R. (2001). Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2, 919–929.

    CAS  PubMed  Google Scholar 

  • Eddy, S.R. (2002). Computational genomics of noncoding RNA genes. Cell 109, 137–140.

    CAS  PubMed  Google Scholar 

  • Gagnon, K.T., Li, L., Janowski, B.A., and Corey, D.R. (2014). Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc 9, 2045–2060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gysin, S., Salt, M., Young, A., and McCormick, F. (2011). Therapeutic strategies for targeting ras proteins. Genes Cancer 2, 359–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I., Mansfeld, J., Buchholz, F., et al. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723.

    CAS  PubMed  Google Scholar 

  • Hilger, R.A., Scheulen, M.E., and Strumberg, D. (2002). The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Oncol Res Treat 25, 511–518.

    CAS  Google Scholar 

  • Huang, J.Z., Chen, M., Chen, D., Gao, X.C., Zhu, S., Huang, H., Hu, M., Zhu, H., and Yan, G.R. (2017). A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 68, 171–184.e6.

    CAS  PubMed  Google Scholar 

  • Ingolia, N.T., Brar, G.A., Stern-Ginossar, N., Harris, M.S., Talhouarne, G.J. S., Jackson, S.E., Wills, M.R., and Weissman, J.S. (2014). Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8, 1365–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, Z., Song, R., Regev, A., and Struhl, K. (2015). Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife 4, e08890.

    PubMed  PubMed Central  Google Scholar 

  • Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama, H., Nagasu, T., and Oda, Y. (2001). Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15, 1416–1421.

    CAS  PubMed  Google Scholar 

  • Kawada, K., Toda, K., and Sakai, Y. (2017). Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol 22, 651–659.

    CAS  PubMed  Google Scholar 

  • Kim, M., and Slack, F.J. (2014). MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol 7, 84.

    PubMed  PubMed Central  Google Scholar 

  • Kolch, W. (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351, 289–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, W., and Chen, J. (2017). Recent progress in mass spectrometry proteomics for biomedical research. Sci China Life Sci 60, 1093–1113.

    CAS  PubMed  Google Scholar 

  • Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    CAS  PubMed  Google Scholar 

  • Liu, P., Yang, H., Zhang, J., Peng, X., Lu, Z., Tong, W., and Chen, J. (2017). The lncRNA MALAT1 acts as a competing endogenous RNA to regulate KRAS expression by sponging miR-217 in pancreatic ductal adenocarcinoma. Sci Rep 7, 5186.

    PubMed  PubMed Central  Google Scholar 

  • Makarewich, C.A., Baskin, K.K., Munir, A.Z., Bezprozvannaya, S., Sharma, G., Khemtong, C., Shah, A.M., McAnally, J.R., Malloy, C. R., Szweda, L.I., et al. (2018). MOXI is a mitochondrial micropeptide that enhances fatty acid β-Oxidation. Cell Rep 23, 3701–3709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., Saghatelian, A., Nakayama, K.I., Clohessy, J.G., and Pandolfi, P.P. (2017). mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541, 228–232.

    CAS  PubMed  Google Scholar 

  • McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E. W.T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BioChim Biophysica Acta (BBA) — Mol Cell Res 1773, 1263–1284.

    CAS  Google Scholar 

  • Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., et al. (2004). Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36, 40–45.

    PubMed  Google Scholar 

  • Polycarpou-Schwarz, M., Groß, M., Mestdagh, P., Schott, J., Grund, S.E., Hildenbrand, C., Rom, J., Aulmann, S., Sinn, H.P., Vandesompele, J., et al. (2018). The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene 37, 4750–4768.

    CAS  PubMed  Google Scholar 

  • Razooky, B.S., Obermayer, B., O’May, J.B., and Tarakhovsky, A. (2017). Viral infection identifies micropeptides differentially regulated in smORF-containing lncRNAs. Genes 8, 206.

    PubMed Central  Google Scholar 

  • Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M. (2014). Long non-coding RNAs as a source of new peptides. eLife 3, e03523.

    PubMed  PubMed Central  Google Scholar 

  • Siepel, A., Pollard, K.S., and Haussler, D. (2006). New methods for detecting lineage-specific selection. (Berlin, Heidelberg, Springer Berlin Heidelberg), pp. 190–205.

    Google Scholar 

  • Simanshu, D.K., Nissley, D.V., and McCormick, F. (2017). RAS proteins and their regulators in human disease. Cell 170, 17–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slavoff, S.A., Mitchell, A.J., Schwaid, A.G., Cabili, M.N., Ma, J., Levin, J. Z., Karger, A.D., Budnik, B.A., Rinn, J.L., and Saghatelian, A. (2013). Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 9, 59–64.

    CAS  PubMed  Google Scholar 

  • Stein, C.S., Jadiya, P., Zhang, X., McLendon, J.M., Abouassaly, G.M., Witmer, N.H., Anderson, E.J., Elrod, J.W., and Boudreau, R.L. (2018). Mitoregulin: A lncRNA-Encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep 23, 3710–3720.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thasler, W.E., Weiss, T.S., Schillhorn, K., Stoll, P.T., Irrgang, B., and Jauch, K.W. (2003). Charitable state-controlled foundation human tissue and cell research: Ethic and legal aspects in the supply of surgically removed human tissue for research in the academic and commercial sector in Germany. Cell Tissue Banking 4, 49–56.

    PubMed  Google Scholar 

  • Vigil, D., Cherfils, J., Rossman, K.L., and Der, C.J. (2010). Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10, 842–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L.Q., Yu, P., Li, B., Guo, Y.H., Liang, Z.R., Zheng, L.L., Yang, J.H., Xu, H., Liu, S., Zheng, L.S., et al. (2018). miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol 12, 1949–1964.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Z., Huang, R., Xing, X., Chen, Y., Deng, H., and Yang, X. (2018). De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res 46, e61.

    PubMed  PubMed Central  Google Scholar 

  • Yeasmin, F., Yada, T., and Akimitsu, N. (2018). Micropeptides encoded in transcripts previously identified as long noncoding rnas: A new chapter in transcriptomics and proteomics. Front Genet 9, 144.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Vashisht, A.A., O’Rourke, J., Corbel, S.Y., Moran, R., Romero, A., Miraglia, L., Zhang, J., Durrant, E., Schmedt, C., et al. (2017). The microprotein minion controls cell fusion and muscle formation. Nat Commun 8, 15664.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shujuan Xie for providing the normal liver tissues and the corresponding paracancer tissue samples. This work was supported by the National Key Research and Development Program of China (2017YFA0504400), the National Natural Science Foundation of China (31370791, 31671349, 31770879), Fundamental Research Funds for the Central Universities (14lgjc18). This research was supported in part by the Guangdong Province Key Laboratory of Computational Science (13lgjc05) and the Guangdong Province Computational Science Innovative Research Team (14lgjc18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Yang or Lianghu Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Deng, B., Lin, P. et al. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci. China Life Sci. 63, 529–542 (2020). https://doi.org/10.1007/s11427-019-9580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9580-5

Navigation