Skip to main content
Log in

Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G.J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26, 909–915.

    Article  CAS  PubMed  Google Scholar 

  • Abitua, P.B., Wagner, E., Navarrete, I.A., and Levine, M. (2012). Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adewoye, A.B., Lindsay, S.J., Dubrova, Y.E., and Hurles, M.E. (2015). The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat Commun 6, 6684.

    Article  CAS  PubMed  Google Scholar 

  • Allen, S.E., and Nowacki, M. (2017). Necessity is the mother of invention: ciliates, transposons, and transgenerational inheritance. Trends Genet 33, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Alvers, A.L., Ryan, S., Scherz, P.J., Huisken, J., and Bagnat, M. (2014). Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development 141, 1110–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammermann, D., Steinbrück, G., Baur, R., and Wohlert, H. (1981). Methylated bases in the DNA of the ciliate Stylonychia mytilus. Eur J Cell Biol 24, 154–156.

    CAS  PubMed  Google Scholar 

  • Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y.L., et al. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, J.O. (2009). Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol 63, 177–193.

    Article  CAS  PubMed  Google Scholar 

  • Appeltans, W., Ahyong, S.T., Anderson, G., Angel, M.V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., et al. (2012). The magnitude of global marine species diversity. Curr Biol 22, 2189–2202.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, D., and Extavour, C. (2016). Editorial overview: developmental mechanisms, patterning and evolution: new models for genetics and development—diversity at last. Curr Opin Genet Dev 39, iv–vi.

    Article  PubMed  Google Scholar 

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baer, M.M., Chanut-Delalande, H., and Affolter, M. (2009). Cellular and molecular mechanisms underlying the formation of biological tubes. Curr Top Dev Biol 89, 137–162.

    Article  CAS  PubMed  Google Scholar 

  • Ball, S.G., Bhattacharya, D., and Weber, A.P.M. (2016). Pathogen to powerhouse. Science 351, 659–660.

    Article  CAS  PubMed  Google Scholar 

  • Barrio, L., and Milán, M. (2020). Regulation of anisotropic tissue growth by two orthogonal signaling centers. Dev Cell 52, 659–672.e3.

    Article  CAS  PubMed  Google Scholar 

  • Basler, K., and Struhl, G. (1994). Compartment boundaries and the control of Drosopfiffa limb pattern by hedgehog protein. Nature 368, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Beh, L.Y., Debelouchina, G.T., Clay, D.M., Thompson, R.E., Lindblad, K. A., Hutton, E.R., Bracht, J.R., Sebra, R.P., Muir, T.W., and Landweber, L.F. (2019). Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177, 1781–1796.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisaw, A., Kuenne, C., Guenther, S., Dallmann, J., Wu, C.C., Bentsen, M., Looso, M., and Stainier, D.Y.R. (2020). AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during zebrafish heart regeneration. Circ Res 126, 1760–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejsovec, A. (2018). Wingless signaling: a genetic journey from morphogenesis to metastasis. Genetics 208, 1311–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Zvi, D., Pyrowolakis, G., Barkai, N., and Shilo, B.Z. (2011). Expansion-repression mechanism for scaling the Dpp activation gradient in Drosophila wing imaginal discs. Curr Biol 21, 1391–1396.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann, O., Bhardwaj, R.D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B.A., Druid, H., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324, 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann, O., Zdunek, S., Felker, A., Salehpour, M., Alkass, K., Bernard, S., Sjostrom, S.L., Szewczykowska, M., Jackowska, T., Dos Remedios, C., et al. (2015). Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575.

    Article  CAS  PubMed  Google Scholar 

  • Bhattachan, P., Rae, J., Yu, H., Jung, W.R., Wei, J., Parton, R.G., and Dong, B. (2020). Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB J 34, 1345–1361.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, D., and Price, D.C. (2020). The algal tree of life from a genomics perspective. In: Larkum, A.W.D., Grossmann, A.R., and Raven, J.A., eds. Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Heidelberg: Springer International Publishing. 11–24.

    Chapter  Google Scholar 

  • Billon, P., and Côté, J. (2012). Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta 1819, 290–302.

    Article  CAS  Google Scholar 

  • Bird, A. (1992). The essentials of DNA methylation. Cell 70, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Boswell, C.W., and Ciruna, B. (2017). Understanding idiopathic scoliosis: a new zebrafish school of thought. Trends Genet 33, 183–196.

    Article  CAS  PubMed  Google Scholar 

  • Boulan, L., Milán, M., and Léopold, P. (2015). The systemic control of growth. Cold Spring Harb Perspect Biol 7, a019117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourlat, S.J., Juliusdottir, T., Lowe, C.J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E.S., Thorndyke, M., Nakano, H., Kohn, A.B., et al. (2006). Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Bracht, J.R., Perlman, D.H., and Landweber, L.F. (2012). Cytosine methylation and hydroxymethylation mark DNA for elimination in Oxytricha trifallax. Genome Biol 13, R99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray, S.J. (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7, 678–689.

    Article  CAS  PubMed  Google Scholar 

  • Breiling, A., and Lyko, F. (2015). Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenet Chromatin 8, 24.

    Article  CAS  Google Scholar 

  • Bryant, D.M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M.B., Payzin-Dogru, D., Lee, T.J., Leigh, N.D., Kuo, T.H., Davis, F.G., et al. (2017). A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18, 762–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, R., and Basler, K. (1996). Dpp receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122, 2261–2269.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Martinez, A., Vargas-Gonzalez, A., Guarner-Lans, V., Prado-Zayago, E., Leon-Oleda, M., and Nieto-Lima, B. (2010). Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch Cardiol Mex 80, 79–86.

    PubMed  Google Scholar 

  • Cao, C., Lemaire, L.A., Wang, W., Yoon, P.H., Choi, Y.A., Parsons, L.R., Matese, J.C., Wang, W., Levine, M., and Chen, K. (2019). Comprehensive single-cell transcriptome lineages of a protovertebrate. Nature 571, 349–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, X.W., and Zhang, L.S. (2018). Application advances and prospects of CRISPR/Cas9 genome editing in nematodes (in Chinese). Sci Sin Vitae 48, 513–520.

    Article  Google Scholar 

  • Caprile, T., Hein, S., Rodrıguez, S., Montecinos, H., and Rodrıguez, E. (2003). Reissner fiber binds and transports away monoamines present in the cerebrospinal fluid. Mol Brain Res 110, 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, A.C., Lam, N.T., Savla, J.J., Nakada, Y., Pereira, A.H.M., Elnwasany, A., Menendez-Montes, I., Ensley, E.L., Bezan Petric, U., Sharma, G., et al. (2020a). Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nat Metab 2, 167–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, A.C., Pereira, A.H.M., and Sadek, H.A. (2020b). Mechanisms of neonatal heart regeneration. Curr Cardiol Rep 22, 33.

    Article  PubMed  Google Scholar 

  • Caron, F., and Meyer, E. (1985). Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature 314, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2017). Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255, 297–357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chablais, F., Veit, J., Rainer, G., and Jaźwińska, A. (2011). The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalker, D.L., and Yao, M.C. (2001). Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev 15, 1287–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, S.J., Cao, Q.P., and Steiner, D.F. (1990). Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proc Natl Acad Sci USA 87, 9319–9323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary, V., Hingole, S., Frei, J., Port, F., Strutt, D., and Boutros, M. (2019). Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing Drosophila wing. Development 146, dev174789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C., Perlman, D.H., Doak, T.G., Stuart, A., Amemiya, C.T., et al. (2014). The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Jiang, Y., Gao, F., Zheng, W., Krock, T.J., Stover, N.A., Lu, C., Katz, L.A., and Song, W. (2019). Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19, 1292–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. (2019). The formation of the Thickveins (Tkv) gradient in Drosophila wing discs: a theoretical study. J Theor Biol 474, 25–41.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, T., Wang, Y., Huang, J., Chen, X., Zhao, X., Gao, S., and Song, W. (2019). Our recent progress in epigenetic research using the model ciliate, Tetrahymena thermophila. Mar Life Sci Technol 1, 4–14.

    Article  Google Scholar 

  • Chicoine, L.G., and Allis, C.D. (1986). Regulation of histone acetylation during macronuclear differentiation in Tetrahymena: evidence for control at the level of acetylation and deacetylation. Dev Biol 116, 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Cho, E., and Irvine, K.D. (2004). Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 131, 4489–4500.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J.Y., Bubnell, J.E., and Aquadro, C.F. (2015). Population genomics of infectious and integrated Wolbachia pipientis genomes in Drosophila ananassae. Genome Biol Evol 7, 2362–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, X.L., Zhang, B.W., Zhang, Q.G., Zhu, B.R., Lin, K., and Zhang, D.Y. (2018). Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol Biol 18, 126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cloney, R.A. (1982). Ascidian larvae and the events of metamorphosis. Am Zool 22, 817–826.

    Article  Google Scholar 

  • Conant, E.B. (1973). Regeneration in the African lungfish, Protopterus. III. Regeneration during fasting and estivation. Biol Bull 144, 248–261.

    Article  CAS  PubMed  Google Scholar 

  • Cong, Y., Xie, Y., and Zhang, L. (2020a). Transcriptome analysis of the response of marine nematode Litoditis marina to acidic stress (in Chinese). Oceanol Limnol Sin 51, 1472–1482.

    Google Scholar 

  • Cong, Y., Yang, H., Zhang, P., Xie, Y., Cao, X., and Zhang, L. (2020b). Transcriptome analysis of the nematode Caenorhabditis elegans in acidic stress environments. Front Physiol 11, 1107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper, E.D. (2014). Horizontal gene transfer: accidental inheritance drives adaptation. Curr Biol 24, R562–R564.

    Article  CAS  PubMed  Google Scholar 

  • Corallo, D., Trapani, V., and Bonaldo, P. (2015). The notochord: structure and functions. Cell Mol Life Sci 72, 2989–3008.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, D.J., Tait, A., and Goddard, J.M. (1974). Methylated bases in DNA from Parameciumaurelia. Biochim Biophys Acta 374, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, B.A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., Arias, M.C., Ball, S.G., Gile, G.H., Hirakawa, Y., et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Darehzereshki, A., Rubin, N., Gamba, L., Kim, J., Fraser, J., Huang, Y., Billings, J., Mohammadzadeh, R., Wood, J., Warburton, D., et al. (2015). Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 399, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Datta, A., Bryant, D.M., and Mostov, K.E. (2011). Molecular regulation of lumen morphogenesis. Curr Biol 21, R126–R136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Celis, J.F. (2003). Pattern formation in the Drosophila wing: The development of the veins. BioEssays 25, 443–451.

    Article  CAS  PubMed  Google Scholar 

  • De Celis, J.F., and Diaz-Benjumea, F.J. (2003). Developmental basis for vein pattern variations in insect wings. Inter J Dev Biol 47, 653–663.

    Google Scholar 

  • Dehal, P., Satou, Y., Campbell, R.K., Chapman, J., Degnan, B., De Tomaso, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D.M., et al. (2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167.

    Article  CAS  PubMed  Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D., and Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968.

    Article  CAS  PubMed  Google Scholar 

  • Deneke, V.E., Melbinger, A., Vergassola, M., and Di Talia, S. (2016). Waves of Cdk1 activity in s phase synchronize the cell cycle in Drosophila embryos. Dev Cell 38, 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, T., Wu, F., Zhou, Z., and Su, T. (2020). Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci 63, 172–187.

    Article  Google Scholar 

  • Deng, W., Nies, F., Feuer, A., Bocina, I., Oliver, D., and Jiang, D. (2013). Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci USA 110, 14972–14977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denker, E., Bocina, I., and Jiang, D. (2013). Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 140, 2985–2996.

    Article  CAS  PubMed  Google Scholar 

  • Denker, E., Sehring, I.M., Dong, B., Audisso, J., Mathiesen, B., and Jiang, D. (2015). Regulation by a TGFβ-ROCK-actomyosin axis secures a non-linear lumen expansion that is essential for tubulogenesis. Development 142, 1639–1650.

    CAS  PubMed  Google Scholar 

  • Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A.Z., Robbens, S., Partensky, F., Degroeve, S., Echeynié, S., Cooke, R., et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103, 11647–11652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derycke, S., De Meester, N., Rigaux, A., Creer, S., Bik, H., Thomas, W.K., and Moens, T. (2016). Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol Ecol 25, 2093–2110.

    Article  CAS  PubMed  Google Scholar 

  • Desban, L., Prendergast, A., Roussel, J., Rosello, M., Geny, D., Wyart, C., and Bardet, P.L. (2019). Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol 17, e3000235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschamps, P., and Moreira, D. (2012). Reevaluating the green contribution to diatom genomes. Genome Biol Evol 4, 683–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Benjumea, F.J., and Cohen, S.M. (1993). Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Doherty, K.M., van de Warrenburg, B.P., Peralta, M.C., Silveira-Moriyama, L., Azulay, J.P., Gershanik, O.S., and Bloem, B.R. (2011). Postural deformities in Parkinson’s disease. Lancet Neurol 10, 538–549.

    Article  PubMed  Google Scholar 

  • Dong, B., Horie, T., Denker, E., Kusakabe, T., Tsuda, M., Smith, W.C., and Jiang, D. (2009). Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol 330, 237–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, B., Deng, W., and Jiang, D. (2011). Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138, 1631–1641.

    Article  CAS  PubMed  Google Scholar 

  • Dorrell, R.G., Gile, G., McCallum, G., Méheust, R., Bapteste, E.P., Klinger, C.M., Brillet-Guéguen, L., Freeman, K.D., Richter, D.J., and Bowler, C. (2017). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6, e23717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumortier, J.G., Le Verge-Serandour, M., Tortorelli, A.F., Mielke, A., de Plater, L., Turlier, H., and Maître, J.L. (2019). Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365, 465–468.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, B.K., and Miller, J.H. (1980). Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561.

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer, N., and Guerra, C.A. (2019). Global maps of soil-dwelling nematode worms. Nature 572, 187–188.

    Article  CAS  PubMed  Google Scholar 

  • Else, K.J., Keiser, J., Holland, C.V., Grencis, R.K., Sattelle, D.B., Fujiwara, R.T., Bueno, L.L., Asaolu, S.O., Sowemimo, O.A., and Cooper, P.J. (2020). Whipworm and roundworm infections. Nat Rev Dis Primers 6, 44.

    Article  PubMed  Google Scholar 

  • Endo, T., Bryant, S.V., and Gardiner, D.M. (2004). A stepwise model system for limb regeneration. Dev Biol 270, 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Ettensohn, C.A. (2013). Encoding anatomy: developmental gene regulatory networks and morphogenesis. Genesis 51, 383–409.

    Article  CAS  PubMed  Google Scholar 

  • Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., and Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.

    Article  CAS  PubMed  Google Scholar 

  • Eyres, I., Boschetti, C., Crisp, A., Smith, T.P., Fontaneto, D., Tunnacliffe, A., and Barraclough, T.G. (2015). Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 13, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fadzan, M., and Bettany-Saltikov, J. (2017). Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J 11, 1466–1489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, X., Qiu, H., Han, W., Wang, Y., Xu, D., Zhang, X., Bhattacharya, D., and Ye, N. (2020). Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Sci Adv 6, eaba0111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Y., Lai, K.S., She, P., Sun, J., Tao, W., and Zhong, T.P. (2020). Tbx20 induction promotes zebrafish heart regeneration by inducing cardiomyocyte dedifferentiation and endocardial expansion. Front Cell Dev Biol 8, 738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei, J.F., Schuez, M., Knapp, D., Taniguchi, Y., Drechsel, D.N., and Tanaka, E.M. (2017). Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc Natl Acad Sci USA 114, 12501–12506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman, J.L., and Priess, J.R. (2012). A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 22, 575–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, D., Chen, Z., Yang, K., Miao, S., Xu, B., Kang, Y., Xie, H., and Zhao, C. (2017). The cytoplasmic tail of rhodopsin triggers rapid rod degeneration in kinesin-2 mutants. J Biol Chem 292, 17375–17386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A. L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., et al. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44, D279–D285.

    Article  CAS  PubMed  Google Scholar 

  • Flink, I.L. (2002). Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridinelabeled nuclei. Anat Embryol 205, 235–244.

    Article  Google Scholar 

  • Flores-Benitez, D., and Knust, E. (2016). Dynamics of epithelial cell polarity in Drosophila: how to regulate the regulators? Curr Opin Cell Biol 42, 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Foster, P.L., Hanson, A.J., Lee, H., Popodi, E.M., and Tang, H. (2013). On the mutational topology of the bacterial genome. G3 (Bethesda) 3, 399–407.

    Article  CAS  Google Scholar 

  • Fu, Y., Luo, G.Z., Chen, K., Deng, X., Yu, M., Han, D., Hao, Z., Liu, J., Lu, X., Dore, L.C., et al. (2015). N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 11, 879–892.

    Article  CAS  Google Scholar 

  • Fukuda, R., Marín-Juez, R., El-Sammak, H., Beisaw, A., Ramadass, R., Kuenne, C., Guenther, S., Konzer, A., Bhagwat, A.M., Graumann, J., et al. (2020). Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO Rep 21.

  • Funakoshi, Y., Minami, M., and Tabata, T. (2001). mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins. Development 128, 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Gálvez-Santisteban, M., Chen, D., Zhang, R., Serrano, R., Nguyen, C., Zhao, L., Nerb, L., Masutani, E.M., Vermot, J., Burns, C.G., et al. (2019). Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. eLife 8, e44816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, F., Warren, A., Zhang, Q., Gong, J., Miao, M., Sun, P., Xu, D., Huang, J., Yi, Z., and Song, W. (2016). The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6, 24874.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, F., Roy, S.W., and Katz, L.A. (2015). Analyses of alternatively processed genes in ciliates provide insights into the origins of scrambled genomes and may provide a mechanism for speciation. mBio 6, e01998–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Y., Gong, R., Jiang, Y., Pan, B., Li, Y., Warren, A., Jiang, J., and Gao, F. (2020). Morphogenetic characters of the model ciliate Euplotes vannus (Ciliophora, Spirotrichea): Notes on cortical pattern formation during conjugational and postconjugational reorganization. Eur J Protistol 73, 125675.

    Article  PubMed  Google Scholar 

  • Gemberling, M., Karra, R., Dickson, A.L., and Poss, K.D. (2015). Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 4, e05871.

    Article  PubMed Central  Google Scholar 

  • Gerber, T., Murawala, P., Knapp, D., Masselink, W., Schuez, M., Hermann, S., Gac-Santel, M., Nowoshilow, S., Kageyama, J., Khattak, S., et al. (2018). Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362, eaaq0681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godin, A.G., Lounis, B., and Cognet, L. (2014). Super-resolution microscopy approaches for live cell imaging. Biophys J 107, 1777–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin, J.W., Debuque, R., Salimova, E., and Rosenthal, N.A. (2017). Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Godwin, J.W., Pinto, A.R., and Rosenthal, N.A. (2013). Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110, 9415–9420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, R., Jiang, Y., Vallesi, A., Gao, Y., and Gao, F. (2020). Conjugation in Euplotes raikovi (Protista, ciliophora): New insights into nuclear events and macronuclear development from micronucleate and amicronucleate cells. Microorganisms 8, 162.

    Article  CAS  PubMed Central  Google Scholar 

  • González-Rosa, J.M., Martín, V., Peralta, M., Torres, M., and Mercader, N. (2011). Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663–1674.

    Article  PubMed  CAS  Google Scholar 

  • González-Rosa, J.M., Peralta, M., and Mercader, N. (2012). Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • González-Rosa, J.M., Sharpe, M., Field, D., Soonpaa, M.H., Field, L.J., Burns, C.E., and Burns, C.G. (2018). Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 44, 433–446.e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorbman, A., Nozaki, M., and Kubokawa, K. (1999). A brain-Hatschek’s pit connection in amphioxus. Gen Comp Endocrinol 113, 251–254.

    Article  CAS  PubMed  Google Scholar 

  • Gorovsky, M.A., Hattman, S., and Pleger, G.L. (1973). [6N]methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol 56, 697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer, E.L., Blanco, M.A., Gu, L., Sendinc, E., Liu, J., Aristizábal-Corrales, D., Hsu, C.H., Aravind, L., He, C., and Shi, Y. (2015). DNA Methylation on N6-adenine in C. elegans. Cell 161, 868–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Greider, C.W., and Blackburn, E.H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Grimes, D.T., Boswell, C.W., Morante, N.F.C., Henkelman, R.M., Burdine, R.D., and Ciruna, B. (2016). Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352, 1341–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm, M., Brünen-Nieweler, C., Junker, V., Heckmann, K., and Beier, H. (1998). The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res 26, 4557–4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivas, J., Haag, M., Johnson, A., Manalo, T., Roell, J., Das, T.L., Brown, E., Burns, A.R., and Lafontant, P.J. (2014). Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp Biochem Physiol Part C Toxicol Pharmacol 163, 14–23.

    Article  CAS  Google Scholar 

  • Guillemette, B., Bataille, A.R., Gévry, N., Adam, M., Blanchette, M., Robert, F., and Gaudreau, L. (2005). Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3, e384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, B., Zhang, S., Wang, S., and Liang, Y. (2009). Expression, mitogenic activity and regulation by growth hormone of growth hormone/insulinlike growth factor in Branchiostoma belcheri. Cell Tissue Res 338, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Haft, D.H., Selengut, J.D., and White, O. (2003). The TIGRFAMs database of protein families. Nucleic Acids Res 31, 371–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder, G., Polaczyk, P., Kraus, M.E., Hudson, A., Kim, J., Laughon, A., and Carroll, S. (1998). The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev 12, 3900–3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaratoglu, F., Affolter, M., and Pyrowolakis, G. (2014). Dpp/BMP signaling in flies: From molecules to biology. Semin Cell Dev Biol 32, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., Chen, A., Umansky, K.B., Oonk, K.A., Choi, W.Y., Dickson, A.L., Ou, J., Cigliola, V., Yifa, O., Cao, J., et al. (2019). Vitamin D stimulates cardiomyocyte proliferation and controls organ size and regeneration in zebrafish. Dev Cell 48, 853–863.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, Z., Wu, T., Cui, X., Zhu, P., Tan, C., Dou, X., Hsu, K.W., Lin, Y.T., Peng, P.H., Zhang, L.S., et al. (2020). N6-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 78, 382–395.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, G.S., and Karrer, K.M. (1985). DNA synthesis, methylation and degradation during conjugation in Tetrahymena thermophila. Nucl Acids Res 13, 73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, G.S., Findly, R.C., and Karrer, K.M. (1986). Site-specific methylation of adenine in the nuclear genome of a eucaryote, Tetrahymena thermophila. Mol Cell Biol 6, 2364–2370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, H., Robin, F.B., Sherrard, K.M., and Munro, E.M. (2015). Sequential contraction and exchange of apical junctions drives zippering and neural tube closure in a simple chordate. Dev Cell 32, 241–255.

    Article  CAS  PubMed  Google Scholar 

  • Hattman, S. (2005). DNA-[adenine] methylation in lower eukaryotes. Biochem (Moscow) 70, 550–558.

    Article  CAS  Google Scholar 

  • Hattman, S., Kenny, C., Berger, L., and Pratt, K. (1978). Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol 135, 1156–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haubner, B.J., Schneider, J., Schweigmann, U., Schuetz, T., Dichtl, W., Velik-Salchner, C., Stein, J.I., and Penninger, J.M. (2016). Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118, 216–221.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, S., and Dong, B. (2017). Shape and geometry control of the Drosophila tracheal tubule. Dev Growth Differ 59, 4–11.

    Article  PubMed  Google Scholar 

  • Heaphy, S.M., Mariotti, M., Gladyshev, V.N., Atkins, J.F., and Baranov, P. V. (2016). Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol Biol Evol 33, 2885–2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein, S.J., Lehmann, L.H., Kossack, M., Juergensen, L., Fuchs, D., Katus, H.A., and Hassel, D. (2015). Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS ONE 10, e0122665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herwig, L., Blum, Y., Krudewig, A., Ellertsdottir, E., Lenard, A., Belting, H.G., and Affolter, M. (2011). Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21, 1942–1948.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, R.P., and Thiel, H. (1988). Introduction to the study of meiofauna. Eur J Protistol 25, 188–189.

    Google Scholar 

  • Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N Engl J Med 364, 1533–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges, M.M., Zgheib, C., and Liechty, K.W. (2021). A large mammalian model of myocardial regeneration after myocardial infarction in fetal sheep. Adv Wound Care 10, 174–190.

    Article  Google Scholar 

  • Holland, L.Z., Albalat, R., Azumi, K., Benito-Gutiérrez, E., Blow, M.J., Bronner-Fraser, M., Brunet, F., Butts, T., Candiani, S., Dishaw, L.J., et al. (2008). The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18, 1100–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honkoop, H., de Bakker, D.E., Aharonov, A., Kruse, F., Shakked, A., Nguyen, P.D., de Heus, C., Garric, L., Muraro, M.J., Shoffner, A., et al. (2019). Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 8, e50163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X. (2014). Ciliates in extreme environments. J Eukaryot Microbiol 61, 410–418.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Lin, X., and Song, W. (2019). Ciliate Atlas: Species Found in the South China Sea. Beijing: Science Press.

    Google Scholar 

  • Huang, G.N., Thatcher, J.E., McAnally, J., Kong, Y., Qi, X., Tan, W., DiMaio, J.M., Amatruda, J.F., Gerard, R.D., Hill, J.A., et al. (2012). C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P., and Schier, A.F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136, 3089–3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Harrison, M.R., Osorio, A., Kim, J., Baugh, A., Duan, C., Sucov, H.M., and Lien, C.L. (2013). Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS ONE 8, e67266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugot, J.P., Baujard, P., and Morand, S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3, 199–208.

    Article  Google Scholar 

  • Husnik, F., and McCutcheon, J.P. (2017). Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16, 67–79.

    Article  PubMed  CAS  Google Scholar 

  • International Helminth Genomes Consortium. (2019). Comparative genomics of the major parasitic worms. Nat Genet 51, 163–174.

    Article  CAS  Google Scholar 

  • Iruela-Arispe, M.L., and Beitel, G.J. (2013). Tubulogenesis. Development 140, 2851–2855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa, H., and Marshall, W.F. (2011). Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12, 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Morioka, M., Kimura, S., Tasaki, M., Inohaya, K., and Kudo, A. (2014). Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 243, 1106–1115.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto, M., Koujin, T., Osakada, H., Mori, C., Kojidani, T., Matsuda, A., Asakawa, H., Hiraoka, Y., and Haraguchi, T. (2015). Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena. J Cell Sci 128, 1812–1823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer, L.M., Abhiman, S., and Aravind, L. (2011). Natural history of eukaryotic DNA methylation systems. Prog Mol Biol Transl Sci, 101, 25–104.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, L.M., Zhang, D., and Aravind, L. (2016). Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays 38, 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo, E., Quinkler, T., and De Renzis, S. (2018). Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis. Nat Commun 9, 2366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs, M.E., and Klobutcher, L.A. (1996). The long and the short of developmental DNA deletion in Euplotes crassus. J Eukaryot Microbiol 43, 442–452.

    Article  CAS  PubMed  Google Scholar 

  • Jalalvand, E., Robertson, B., Wallén, P., and Grillner, S. (2016). Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 7, 10002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, H., Sung, S., Kwon, T., Seo, M., Caetano-Anollés, K., Choi, S.H., Cho, S., Nasir, A., and Kim, H. (2016). HGTree: database of horizontally transferred genes determined by tree reconciliation. Nucleic Acids Res 44, D610–D619.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, D., and Smith, W.C. (2007). Ascidian notochord morphogenesis. Dev Dyn 236, 1748–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, J., and Hui, C.C. (2008). Hedgehog signaling in development and cancer. Dev Cell 15, 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, J., Shao, C., Xu, H., and Al-Rasheid, K.A.S. (2010). Morphogenetic observations on the marine ciliate Euplotes vannus during cell division (Protozoa: Ciliophora). J Mar Biol Ass 90, 683–689.

    Article  Google Scholar 

  • Jiang, Y., Zhang, T., Vallesi, A., Yang, X., and Gao, F. (2019). Time-course analysis of nuclear events during conjugation in the marine ciliate Euplotes vannus and comparison with other ciliates (Protozoa, Ciliophora). Cell Cycle 18, 288–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, M.D., Tengs, T., Oldach, D.W., Delwiche, C.F., and Stoecker, D. K. (2004). Highly divergent SSU rRNA genes found in the marine ciliates Myrionecta rubra and Mesodinium pulex. Protist 155, 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R.L., Grenier, J.K., and Scott, M.P. (1995). Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161–4170.

    Article  CAS  PubMed  Google Scholar 

  • Jopling, C., Sleep, E., Raya, M., Martí, M., Raya, A., and Izpisúa Belmonte, J.C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jopling, C., Suñé, G., Faucherre, A., Fabregat, C., and Izpisua Belmonte, J. C. (2012). Hypoxia induces myocardial regeneration in zebrafish. Circulation 126, 3017–3027.

    Article  PubMed  Google Scholar 

  • Joven, A., Elewa, A., and Simon, A. (2019). Model systems for regeneration: salamanders. Development 146, dev167700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karrer, K.M., and VanNuland, T.A. (2002). Methylation of adenine in the nuclear DNA of Tetrahymena is internucleosomal and independent of histone H1. Nucleic Acids Res 30, 1364–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawauchi, H., and Sower, S.A. (2006). The dawn and evolution of hormones in the adenohypophysis. General Comp Endocrinol 148, 3–14.

    Article  CAS  Google Scholar 

  • Keeling, P.J., and Palmer, J.D. (2008). Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9, 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, K., Gupta, V., Wang, J., Holdway, J.E., Wills, A.A., Fang, Y., and Poss, K.D. (2011a). tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi, K., Holdway, J.E., Major, R.J., Blum, N., Dahn, R.D., Begemann, G., and Poss, K.D. (2011b). Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20, 397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi, K., Holdway, J.E., Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk, G.F., Evans, T., Macrae, C.A., Stainier, D.Y.R., and Poss, K. D. (2010). Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi, T., Eves-van den Akker, S., and Jones, J.T. (2017). Genome evolution of plant-parasitic nematodes. Annu Rev Phytopathol 55, 333–354.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Wu, Q., Zhang, Y., Wiens, K.M., Huang, Y., Rubin, N., Shimada, H., Handin, R.I., Chao, M.Y., Tuan, T.L., et al. (2010). PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci USA 107, 17206–17210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, W., Xiao, F., Canseco, D.C., Muralidhar, S., Thet, S.W., Zhang, H. M., Abderrahman, Y., Chen, R., Garcia, J.A., Shelton, J.M., et al. (2015). Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523, 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Klein, T., and Arias, A.M. (1998). Different spatial and temporal interactions between Notch, wingless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dev Biol 194, 196–212.

    Article  CAS  PubMed  Google Scholar 

  • Klobutcher, L.A., and Farabaugh, P.J. (2002). Shifty ciliates: frequent programmed translational frameshifting in euplotids. Cell 111, 763–766.

    Article  CAS  PubMed  Google Scholar 

  • Klobutcher, L.A., Gygax, S.E., Podoloff, J.D., Vermeesch, J.R., Price, C. M., Tebeau, C.M., and Jahn, C.L. (1998). Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus. Nucleic Acids Res 26, 4230–4240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, D., Lv, Z., Häring, M., Lin, B., Wolf, F., and Großhans, J. (2019). In vivo optochemical control of cell contractility at single-cell resolution. EMBO Rep 20, e47755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsovoulos, G., Makepeace, B., Tanya, V.N., and Blaxter, M. (2014). Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode. PLoS Genet 10, e1004397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koziol, M.J., Bradshaw, C.R., Allen, G.E., Costa, A.S.H., Frezza, C., and Gurdon, J.B. (2016). Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 23, 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H.H., and Tanaka, E.M. (2009). Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Krzic, U., Gunther, S., Saunders, T.E., Streichan, S.J., and Hufnagel, L. (2012). Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9, 730–733.

    Article  CAS  PubMed  Google Scholar 

  • Ku, C., Nelson-Sathi, S., Roettger, M., Sousa, F.L., Lockhart, P.J., Bryant, D., Hazkani-Covo, E., McInerney, J.O., Landan, G., and Martin, W.F. (2015). Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Godwin, J.W., Gates, P.B., Garza-Garcia, A.A., and Brockes, J. P. (2007). Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson Jr, A.G. (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68, 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurahashi, M. (2016). Solar energy storage using algae. In: Sugiyama, M., Fujii, K., and Nakamura, S., eds. Solar to Chemical Energy Conversion. Heidelberg: Springer. 455–478.

    Chapter  Google Scholar 

  • Lafontant, P.J., Burns, A.R., Grivas, J.A., Lesch, M.A., Lala, T.D., Reuter, S.P., Field, L.J., and Frounfelter, T.D. (2012). The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration. Anat Rec 295, 234–248.

    Article  Google Scholar 

  • Lai, S.L., Marín-Juez, R., Moura, P.L., Kuenne, C., Lai, J.K.H., Tsedeke, A. T., Guenther, S., Looso, M., and Stainier, D.Y. (2017). Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. eLife 6, e25605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander, A.D., Nie, Q., Sanchez-Tapia, C., Simonyan, A., and Wan, F.Y.M. (2020). Regulatory feedback on receptor and non-receptor synthesis for robust signaling. Dev Dyn 249, 383–409.

    Article  PubMed  Google Scholar 

  • Laube, F., Heister, M., Scholz, C., Borchardt, T., and Braun, T. (2006). Reprogramming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci 119, 4719–4729.

    Article  CAS  PubMed  Google Scholar 

  • Lecuit, T., and Wieschaus, E. (2000). Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol 150, 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh, N.D., Dunlap, G.S., Johnson, K., Mariano, R., Oshiro, R., Wong, A. Y., Bryant, D.M., Miller, B.M., Ratner, A., Chen, A., et al. (2018). Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun 9, 5153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W., Burns, C.G., and Poss, K.D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619.

    Article  CAS  PubMed  Google Scholar 

  • Leptin, M., and Grunewald, B. (1990). Cell shape changes during gastrulation in Drosophila. Development 110, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Gao, Z., Ji, D., and Zhang, S. (2014). Functional characterization of GH-like homolog in amphioxus reveals an ancient origin of GH/GH receptor system. Endocrinology 155, 4818–4830.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Jiang, C., Zhang, Y., and Zhang, S. (2017). Activities of amphioxus GH-like protein in osmoregulation: insight into origin of vertebrate GH family. Int J Endocrinol 2017, 1–13.

    CAS  Google Scholar 

  • Liang, Z., Shen, L., Cui, X., Bao, S., Geng, Y., Yu, G., Liang, F., Xie, S., Lu, T., Gu, X., et al. (2018). DNA N6-denine methylation in Arabidopsis thaliana. Dev Cell 45, 406–416.e3.

    Article  CAS  PubMed  Google Scholar 

  • Liao, S., Dong, W., Lv, L., Guo, H., Yang, J., Zhao, H., Huang, R., Yuan, Z., Chen, Y., Feng, S., et al. (2017). Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci 7, 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindgren, D. (1972). The temperature influence on the spontaneous mutation rate. Hereditas 70, 179–184.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zhu, Y., Luo, G.Z., Wang, X., Yue, Y., Wang, X., Zong, X., Chen, K., Yin, H., Fu, Y., et al. (2016). Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun 7, 13052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., and Zhang, S. (2011). Amphioxus IGF-like peptide induces mouse muscle cell development via binding to IGF receptors and activating MAPK and PI3K/Akt signaling pathways. Mol Cell Endocrinol 343, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Lobanov, A.V., Heaphy, S.M., Turanov, A.A., Gerashchenko, M.V., Pucciarelli, S., Devaraj, R.R., Xie, F., Petyuk, V.A., Smith, R.D., Klobutcher, L.A., et al. (2017). Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat Struct Mol Biol 24, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Long, H., Miller, S.F., Strauss, C., Zhao, C., Cheng, L., Ye, Z., Griffin, K., Te, R., Lee, H., Chen, C.C., et al. (2016). Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci USA 113, E2498–E2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, H., Sung, W., Miller, S.F., Ackerman, M.S., Doak, T.G., and Lynch, M. (2015). Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. Genome Biol Evol 7, 262–271.

    Article  CAS  Google Scholar 

  • Lozupone, C.A., Knight, R.D., and Landweber, L.F. (2001). The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Q., Bhattachan, P., and Dong, B. (2019). Ascidian notochord elongation. Dev Biol 448, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Q., Gao, Y., Fu, Y., Peng, H., Shi, W., Li, B., Lv, Z., Feng, X.Q., and Dong, B. (2020). Ciona embryonic tail bending is driven by asymmetrical notochord contractility and coordinated by epithelial proliferation. Development 147, dev185868.

    Article  CAS  PubMed  Google Scholar 

  • Lubarsky, B., and Krasnow, M.A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Luo, G.Z., Hao, Z., Luo, L., Shen, M., Sparvoli, D., Zheng, Y., Zhang, Z., Weng, X., Chen, K., Cui, Q., et al. (2018). N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol 19, 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luporini, P., Pedrini, B., Alimenti, C., and Vallesi, A. (2016). Revisiting fifty years of research on pheromone signaling in ciliates. Eur J Protistol 55, 26–38.

    Article  PubMed  Google Scholar 

  • Luschnig, S., and Uv, A. (2014). Luminal matrices: an inside view on organ morphogenesis. Exp Cell Res 321, 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Z., Rosenbaum, J., Mohr, S., Zhang, X., Kong, D., Preiß, H., Kruss, S., Alim, K., Aspelmeier, T., and Großhans, J. (2020). The emergent yo-yo movement of nuclei driven by cytoskeletal remodeling in pseudo-synchronous mitotic cycles. Curr Biol 30, 2564–2573.e5.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Z., Lu, Q., and Dong, B. (2019). Morphogenesis: a focus on marine invertebrates. Mar Life Sci Technol 1, 28–40.

    Article  Google Scholar 

  • Magadum, A., Ding, Y., He, L., Kim, T., Vasudevarao, M.D., Long, Q., Yang, K., Wickramasinghe, N., Renikunta, H.V., Dubois, N., et al. (2017). Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res 27, 1002–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magiorkinis, G., Belshaw, R., and Katzourakis, A. (2013). ‘There and back again’: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Phil Trans R Soc B 368, 20120504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharjan, R.P., and Ferenci, T. (2017). A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 15, e2001477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann, F.A., Lv, Z., Großhans, J., Opazo, F., and Kruss, S. (2019). Nanobody-conjugated nanotubes for targeted near-infrared in vivo imaging and sensing. Angew Chem Int Ed 58, 11469–11473.

    Article  CAS  Google Scholar 

  • Marín-Juez, R., El-Sammak, H., Helker, C.S.M., Kamezaki, A., Mullapuli, S.T., Bibli, S.I., Foglia, M.J., Fleming, I., Poss, K.D., and Stainier, D.Y.R. (2019). Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev Cell 51, 503–515.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques, I.J., Lupi, E., and Mercader, N. (2019). Model systems for regeneration: zebrafish. Development 146, dev167692.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, L., Vivien, C., Girardot, F., Péricard, L., Demeneix, B.A., Coen, L., and Chai, N. (2017). Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS ONE 12, e0173418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall, L.N., Vivien, C.J., Girardot, F., Péricard, L., Scerbo, P., Palmier, K., Demeneix, B.A., and Coen, L. (2019). Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci USA 116, 3614–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín, M., Ostalé, C.M., and de Celis, J.F. (2017). Patterning of the Drosophila L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development 144, 3168–3176.

    PubMed  Google Scholar 

  • Martindale, D., Allis, C., and Bruns, P. (1982). Conjugation in Tetrahymena thermophile: a temporal analysis of cytological stages. Exp Cell Res 140, 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Matamoro-Vidal, A., Salazar-Ciudad, I., and Houle, D. (2015). Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing. Dev Dyn 244, 1058–1073.

    Article  PubMed  Google Scholar 

  • Matsunobu, S., and Sasakura, Y. (2015). Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis. Dev Biol 405, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • McCusker, C.D., and Gardiner, D.M. (2013). Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum). PLoS ONE 8, e77064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCusker, C.D., and Gardiner, D.M. (2014). Understanding positional cues in salamander limb regeneration: Implications for optimizing cell-based regenerative therapies. Dis Model Mech 7, 593–599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mescher, A.L., and Neff, A.W. (2005). Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol 93, 39–66.

    CAS  PubMed  Google Scholar 

  • Meyer, F., Schmidt, H.J., Plümper, E., Hasilik, A., Mersmann, G., Meyer, H.E., Engström, A., and Heckmann, K. (1991). UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc Natl Acad Sci USA 88, 3758–3761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizotani, Y., Suzuki, M., Hotta, K., Watanabe, H., Shiba, K., Inaba, K., Tashiro, E., Oka, K., and Imoto, M. (2018). 14–3-3εa directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis. Proc Natl Acad Sci USA 115, E8873–E8881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L.T., Park, S.Y., Silberstein, L.E., Dos Remedios, C.G., Graham, D., Colan, S., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110, 1446–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondo, S.J., Dannebaum, R.O., Kuo, R.C., Louie, K.B., Bewick, A.J., LaButti, K., Haridas, S., Kuo, A., Salamov, A., Ahrendt, S.R., et al. (2017). Widespread adenine N6-methylation of active genes in fungi. Nat Genet 49, 964–968.

    Article  CAS  PubMed  Google Scholar 

  • Moustafa, A., Beszteri, B., Maier, U.G., Bowler, C., Valentin, K., and Bhattacharya, D. (2009). Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324, 1724–1726.

    Article  CAS  PubMed  Google Scholar 

  • Münch, J., Grivas, D., González-Rajal, Á., Torregrosa-Carrión, R., and de la Pompa, J.L. (2017). Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144, 1425–1440.

    PubMed  Google Scholar 

  • Nakada, Y., Canseco, D.C., Thet, S.W., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., et al. (2017). Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227.

    Article  CAS  PubMed  Google Scholar 

  • Nellen, D., Burke, R., Struhl, G., and Basler, K. (1996). Direct and longrange action of a DPP morphogen gradient. Cell 85, 357–368.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, C.J., and Cohen, S.M. (1997). Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124, 871–880.

    Article  CAS  PubMed  Google Scholar 

  • Ngo, T.T.M., Yoo, J., Dai, Q., Zhang, Q., He, C., Aksimentiev, A., and Ha, T. (2016). Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 7, 10813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notari, M., Ventura-Rubio, A., Bedford-Guaus, S.J., Jorba, I., Mulero, L., Navajas, D., Martí, M., and Raya, A. (2018). The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci Adv 4, eaao5553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noto, T., and Mochizuki, K. (2017). Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 7, 170172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novikov, A.I., and Khloponin, P.A. (1982). Reparative processes during embryonal and postembryonal myocardiogenesis in Gallus domesticus L. Arkh Anat Gistol Embriol 82, 59–67.

    CAS  PubMed  Google Scholar 

  • Oberpriller, J.O., and Oberpriller, J.C. (1974). Response of the adult newt ventricle to injury. J Exp Zool 187, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Odagiri, Y., Uchida, H., Hosokawa, M., Takemoto, K., Morley, A.A., and Takeda, T. (1998). Accelerated accumulation of somatic mutations in the senescence-accelerated mouse. Nat Genet 19, 116–117.

    Article  CAS  PubMed  Google Scholar 

  • Okitsu, C.Y., Hsieh, J.C.F., and Hsieh, C.L. (2010). Transcriptional activity affects the H3K4me3 level and distribution in the coding region. MCB 30, 2933–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orts-Del’Immagine, A., Cantaut-Belarif, Y., Thouvenin, O., Roussel, J., Baskaran, A., Langui, D., Koeth, F., Bivas, P., Lejeune, F.X., Bardet, P. L., et al. (2020). Sensory neurons contacting the cerebrospinal fluid require the reissner fiber to detect spinal curvature in vivo. Curr Biol 30, 827–839.e824.

    Article  PubMed  CAS  Google Scholar 

  • Pagani, I., Liolios, K., Jansson, J., Chen, I.M.A., Smirnova, T., Nosrat, B., Markowitz, V.M., and Kyrpides, N.C. (2012). The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40, D571–D579.

    Article  CAS  PubMed  Google Scholar 

  • Palacios, G., Martin-Gonzalez, A., and Gutierrez, J.C. (1994). Macronuclear DNA demethylation is involved in the encystment process of the ciliate Colpoda inflata. Cell Biol Int 18, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Pashmforoush, M., Chan, S.J., and Steiner, D.F. (1996). Structure and expression of the insulin-like peptide receptor from amphioxus. Mol Endocrinol 10, 857–866.

    CAS  PubMed  Google Scholar 

  • Peng, C., Ren, J.L., Deng, C., Jiang, D., Wang, J., Qu, J., Chang, J., Yan, C., Jiang, K., Murphy, R.W., et al. (2020a). The genome of Shaw’s sea snake (Hydrophis curtus) reveals secondary adaptation to its marine environment. Mol Biol Evol 37, 1744–1760.

    CAS  PubMed  Google Scholar 

  • Peng, H., Qiao, R., and Dong, B. (2020b). Polarity establishment and maintenance in ascidian notochord. Front Cell Dev Biol 8, 597446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piatkowski, T., Mühlfeld, C., Borchardt, T., and Braun, T. (2013). Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cells Dev 22, 1921–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope, K.L., and Harris, T.J.C. (2008). Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in Drosophila. Development 135, 2227–2238.

    Article  CAS  PubMed  Google Scholar 

  • Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., and Sadek, H.A. (2011). Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P., Rothermel, B.A., Olson, E.N., and Sadek, H.A. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110, 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298, 2188–2190.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, K., and Hattman, S. (1981). Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila. Mol Cell Biol 1, 600–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott, D.M. (1994). The DNA of ciliated protozoa. Microbiol Rev 58, 233–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott, D.M., Bostock, C.J., Murti, K.G., Lauth, M.R., and Gamow, E. (1971). DNA of ciliated protozoa. Chromosoma 34, 355–366.

    Article  Google Scholar 

  • Price, E.L., Vieira, J.M., and Riley, P.R. (2019). Model organisms at the heart of regeneration. Dis Model Mech 12, dmm040691.

    Article  CAS  Google Scholar 

  • Puente, B.N., Kimura, W., Muralidhar, S.A., Moon, J., Amatruda, J.F., Phelps, K.L., Grinsfelder, D., Rothermel, B.A., Chen, R., Garcia, J.A., et al. (2014). The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rae, P.M.M., and Spear, B.B. (1978). Macronuclear DNA of the hypotrichous ciliate Oxytricha fallax. Proc Natl Acad Sci USA 75, 4992–4996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raikov, I.B. (1982). The Protozoan Nucleus: Morphology and Evolution. Vienna: Springer.

    Google Scholar 

  • Raya, A., Koth, C.M., Büscher, D., Kawakami, Y., Itoh, T., Raya, R.M., Sternik, G., Tsai, H.J., Rodríguez-Esteban, C., and Izpisúa-Belmonte, J. C. (2003). Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA 100, 11889–11895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, J.F., and Leroux, M.R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18, 533–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley, J.L., and Katz, L.A. (2001). Widespread distribution of extensive chromosomal fragmentation in ciliates. Mol Biol Evol 18, 1372–1377.

    Article  CAS  PubMed  Google Scholar 

  • Román-Fernández, A., and Bryant, D.M. (2016). Complex polarity: building multicellular tissues through apical membrane traffic. Traffic 17, 1244–1261.

    Article  PubMed  CAS  Google Scholar 

  • Rose, C.D., Pompili, D., Henke, K., Van Gennip, J.L.M., Meyer-Miner, A., Rana, R., Gobron, S., Harris, M.P., Nitz, M., and Ciruna, B. (2020). SCO-Spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr Biol 30, 2363–2373.e6.

    Article  CAS  PubMed  Google Scholar 

  • Rossoni, A.W., Price, D.C., Seger, M., Lyska, D., Lammers, P., Bhattacharya, D., and Weber, A.P. (2019). The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 8, e45017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rota-Stabelli, O., Daley, A.C., and Pisani, D. (2013). Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23, 392–398.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J.J., Theriot, J.A., Sood, P., Marshall, W.F., Landweber, L.F., Fritz-Laylin, L., Polka, J.K., Oliferenko, S., Gerbich, T., Gladfelter, A., et al. (2017). Non-model model organisms. BMC Biol 15, 55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan, F.J., and Kiritani, K. (1959). Effect of temperature on natural mutation in Escherichia coli. J Gen Microbiol 20, 644–653.

    Article  CAS  PubMed  Google Scholar 

  • Saker, D.M., Walsh-Sukys, M., Spector, M., and Zahka, K.G. (1997). Cardiac recovery and survival after neonatal myocardial infarction. Pediatr Cardiol 18, 139–142.

    Article  CAS  PubMed  Google Scholar 

  • Salvini, M., Barone, E., Ronca, S., and Nobili, R. (1986). DNA methylation in vegetative and conjugating cells of a protozoan ciliate: Blepharisma japonicum. Dev Genet 7, 149–158.

    Article  CAS  Google Scholar 

  • Salzberg, S.L., White, O., Peterson, J., and Eisen, J.A. (2001). Microbial genes in the human genome: lateral transfer or gene loss? Science 292, 1903–1906.

    Article  CAS  PubMed  Google Scholar 

  • Sande-Melón, M., Marques, I.J., Galardi-Castilla, M., Langa, X., Pérez-López, M., Botos, M.A., Sánchez-Iranzo, H., Guzmán-Martínez, G., Ferreira Francisco, D.M., Pavlinic, D., et al. (2019). Adult sox10+ cardiomyocytes contribute to myocardial regeneration in the zebrafish. Cell Rep 29, 1041–1054.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santosh, N., Windsor, L.J., Mahmoudi, B.S., Li, B., Zhang, W., Chernoff, E.A., Rao, N., Stocum, D.L., and Song, F. (2011). Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 240, 1127–1141.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, A., Cummings, G.M.C., Bryant, S.V., and Gardiner, D.M. (2010). Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 337, 444–457.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, A., Graham, G.M.C., Bryant, S.V., and Gardiner, D.M. (2008). Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 319, 321–335.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, N. (2008). An aboral-dorsalization hypothesis for chordate origin. Genesis 46, 614–622.

    Article  PubMed  Google Scholar 

  • Satoh, N. (2009). An advanced filter-feeder hypothesis for urochordate evolution. Zool Sci 26, 97–111.

    Article  Google Scholar 

  • Schiffers, S., Ebert, C., Rahimoff, R., Kosmatchev, O., Steinbacher, J., Bohne, A.V., Spada, F., Michalakis, S., Nickelsen, J., Müller, M., et al. (2017). Quantitative LC-MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew Chem Int Ed 56, 11268–11271.

    Article  CAS  Google Scholar 

  • Schmidt, A., and Grosshans, J. (2018). Dynamics of cortical domains in early Drosophila development. J Cell Sci 131, jcs212795.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A., Lv, Z., and Großhans, J. (2018). ELMO and Sponge specify subapical restriction of Canoe and formation of the subapical domain in early Drosophila embryos. Development 145, dev157909.

    PubMed  Google Scholar 

  • Schnabel, K., Wu, C.C., Kurth, T., and Weidinger, G. (2011). Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6, e18503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwank, G., Restrepo, S., and Basler, K. (2008). Growth regulation by Dpp: an essential role for Brinker and a non-essential role for graded signaling levels. Development 135, 4003–4013.

    Article  CAS  PubMed  Google Scholar 

  • Sehring, I.M., Recho, P., Denker, E., Kourakis, M., Mathiesen, B., Hannezo, E., Dong, B., and Jiang, D. (2015). Assembly and positioning of actomyosin rings by contractility and planar cell polarity. eLife 4, e09206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L., Yang, V.K., Cai, L., Wang, M., Wu, T.D., Guerquin-Kern, J.L., Lechene, C.P., and Lee, R.T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436.

    Article  CAS  PubMed  Google Scholar 

  • Shen, H., Gan, P., Wang, K., Darehzereshki, A., Wang, K., Kumar, S.R., Lien, C.L., Patterson, M., Tao, G., and Sucov, H.M. (2020). Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. eLife 9, e53071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng, Y., Duan, L., Cheng, T., Qiao, Y., Stover, N.A., and Gao, S. (2020). The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses. Sci China Life Sci 63, 1534–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewaramani, S., Finn, T.J., Leahy, S.C., Kassen, R., Rainey, P.B., and Moon, C.D. (2017). Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet 13, e1006570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibai, A., Takahashi, Y., Ishizawa, Y., Motooka, D., Nakamura, S., Ying, B.W., and Tsuru, S. (2017). Mutation accumulation under UV radiation in Escherichia coli. Sci Rep 7, 14531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, B.N., Koyano-Nakagawa, N., Gong, W., Moskowitz, I.P., Weaver, C.V., Braunlin, E., Das, S., van Berlo, J.H., Garry, M.G., and Garry, D.J. (2018). A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun 9, 4237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sladitschek, H.L., Fiuza, U.M., Pavlinic, D., Benes, V., Hufnagel, L., and Neveu, P.A. (2020). MorphoSeq: full single-cell transcriptome dynamics up to gastrulation in a chordate. Cell 181, 922–935.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, W., and Shao, C. (2017). Ontogenetic Patterns of Hypotrich Ciliates (in Chinese). Beijing: Science Press.

    Google Scholar 

  • Song, Z., Zhang, X., Jia, S., Yelick, P.C., and Zhao, C. (2016). Zebrafish as a model for human ciliopathies. J Genet Genomics 43, 107–120.

    Article  PubMed  Google Scholar 

  • Stargell, L.A., Bowen, J., Dadd, C.A., Dedon, P.C., Davis, M., Cook, R.G., Allis, C.D., and Gorovsky, M.A. (1993). Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Genes Dev 7, 2641–2651.

    Article  CAS  PubMed  Google Scholar 

  • Stemple, D.L. (2005). Structure and function of the notochord: an essential organ for chordate development. Development 132, 2503–2512.

    Article  CAS  PubMed  Google Scholar 

  • Stockdale, W.T., Lemieux, M.E., Killen, A.C., Zhao, J., Hu, Z., Riepsaame, J., Hamilton, N., Kudoh, T., Riley, P.R., van Aerle, R., et al. (2018). Heart regeneration in the Mexican cavefish. Cell Rep 25, 1997–2007.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocum, D.L. (2011). The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci 34, 908–916.

    Article  PubMed  Google Scholar 

  • Stolfi, A., Gandhi, S., Salek, F., and Christiaen, L. (2014). Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141, 4115–4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolfi, A., Ryan, K., Meinertzhagen, I.A., and Christiaen, L. (2015). Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527, 371–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl, B.D., Ohba, R., Cook, R.G., and Allis, C.D. (1999). Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96, 14967–14972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss, C., Long, H., Patterson, C.E., Te, R., and Lynch, M. (2017). Genome-wide mutation rate response to pH change in the coral reef pathogen Vibrio shilonii AK1. mBio 8, e01021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara, M., Epstein, B., Badgley, B.D., Unno, T., and Sadowsky, M.J. (2013). Comparative genomics of the core and accessory genomes of 48 sinorhizobium strains comprising five genospecies. Genome Biol 14, R17..

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan, W., and Theurkauf, W.E. (1995). The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr Opin Cell Biol 7, 18–22.

    Article  CAS  PubMed  Google Scholar 

  • Swart, E.C., Serra, V., Petroni, G., and Nowacki, M. (2016). Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szostak, J.W., and Blackburn, E.H. (1982). Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Tabata, T., Eaton, S., and Kornberg, T.B. (1992). The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 6, 2635–2645.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Wang, X., Dong, J., Li, Y., Gao, F., Xie, H., and Zhao, C. (2020). Morpholino-mediated knockdown of ciliary genes in Euplotes vannus, a novel marine ciliated model organism. Front Microbiol 11, 549781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Martik, M.L., Li, Y., and Bronner, M.E. (2019). Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. eLife 8, e47929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., et al. (2003). The COG database: an updated version includes eukaryotes. BMC BioInf 4, 41.

    Article  Google Scholar 

  • Tincher, C., Long, H., Behringer, M., Walker, N., and Lynch, M. (2017). The glyphosate-based herbicide roundup does not elevate genome-wide mutagenesis of Escherichia coli. G3 7, 3331–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treen, N., Yoshida, K., Sakuma, T., Sasaki, H., Kawai, N., Yamamoto, T., and Sasakura, Y. (2014). Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Trielli, F., Amaroli, A., Sifredi, F., Marchi, B., Falugi, C., and Corrado, M. U. D. (2007). Effects of xenobiotic compounds on the cell activities of Euplotes crassus, a single-cell eukaryotic test organism for the study of the pollution of marine sediments. Aquat Toxicol 83, 272–283.

    Article  CAS  PubMed  Google Scholar 

  • Tsujikawa, M., and Malicki, J. (2004). Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, A., Peterson, A.J., Kim, M.J., and O’Connor, M.B. (2020). Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. eLife 9, e51710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Etten, J., and Bhattacharya, D. (2020). Horizontal gene transfer in eukaryotes: not if, but how much? Trends Genet 36, 915–925.

    Article  CAS  PubMed  Google Scholar 

  • van Megen, H., van den Elsen, S., Holterman, M., Karssen, G., Mooyman, P., Bongers, T., Holovachov, O., Bakker, J., and Helder, J. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 927–950.

    Article  CAS  Google Scholar 

  • van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198.

    Article  CAS  PubMed  Google Scholar 

  • Van Gennip, J.L.M., Boswell, C.W., and Ciruna, B. (2018). Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis. Sci Adv 4, eaav1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verissimo, K.M., Perez, L.N., Dragalzew, A.C., Senevirathne, G., Darnet, S., Barroso Mendes, W.R., Ariel Dos Santos Neves, C., Monteiro Dos Santos, E., Nazare de Sousa Moraes, C., Elewa, A., et al. (2020). Salamander-like tail regeneration in the West African lungfish. Proc R Soc B 287, 20192939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivien, C.J., Hudson, J.E., and Porrello, E.R. (2016). Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 1, 16012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner, A., Whitaker, R.J., Krause, D.J., Heilers, J.H., van Wolferen, M., van der Does, C., and Albers, S.V. (2017). Mechanisms of gene flow in archaea. Nat Rev Microbiol 15, 492–501.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Cao, J., Dickson, A.L., and Poss, K.D. (2015). Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Karra, R., Dickson, A.L., and Poss, K.D. (2013). Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 382, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Panáková, D., Kikuchi, K., Holdway, J.E., Gemberling, M., Burris, J.S., Singh, S.P., Dickson, A.L., Lin, Y.F., Sabeh, M.K., et al. (2011). The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421–3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Xiong, J., Wang, W., Miao, W., and Liang, A. (2016). High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep 6, 21139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Hu, C.K., Zeng, A., Alegre, D., Hu, D., Gotting, K., Ortega Granillo, A., Wang, Y., Robb, S., Schnittker, R., et al. (2020a). Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Li, Z., Zhang, Q., Li, B., Lu, C., Li, W., Cheng, T., Xia, Q., and Zhao, P. (2018). DNA methylation on N6-adenine in lepidopteran Bombyx mori. Biochim Biophys Acta 1861, 815–825.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, S., Meng, Z., and Zhao, C. (2020b). Adrb1 and Adrb2b are the major β-adrenergic receptors regulating body axis straightening in zebrafish. J Genets Genomics doi: https://doi.org/10.1016/j.jgg.2020.10.009.

  • Wang, Y., Chen, X., Sheng, Y., Liu, Y., and Gao, S. (2017). N6-denine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res 45, 11594–11606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sheng, Y., Liu, Y., Zhang, W., Cheng, T., Duan, L., Pan, B., Qiao, Y., Liu, Y., and Gao, S. (2019). A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res 47, 11771–11789.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, F. (2020). A new era for evolutionary developmental biology in non-model organisms. Sci China Life Sci 63, 1251–1253.

    Article  PubMed  Google Scholar 

  • Wei, J., Wang, G., Li, X., Ren, P., Yu, H., and Dong, B. (2017). Architectural delineation and molecular identification of extracellular matrix in ascidian embryos and larvae. Biol Open 6, 1383–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, K., Serpooshan, V., Hurtado, C., Diez-Cuñado, M., Zhao, M., Maruyama, S., Zhu, W., Fajardo, G., Noseda, M., Nakamura, K., et al. (2015). Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein, S.L. (2019). The natural history of adolescent idiopathic scoliosis. J Pediatr Orthop 39, S44–S46.

    Article  PubMed  Google Scholar 

  • Winkler, F., Gummalla, M., Künneke, L., Lv, Z., Zippelius, A., Aspelmeier, T., and Grosshans, J. (2015). Fluctuation analysis of centrosomes reveals a cortical function of kinesin-1. Biophys J 109, 856–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witman, N., Murtuza, B., Davis, B., Arner, A., and Morrison, J.I. (2011). Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T.P., Wang, T., Seetin, M.G., Lai, Y., Zhu, S., Lin, K., Liu, Y., Byrum, S.D., Mackintosh, S.G., Zhong, M., et al. (2016). DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, C., Gao, L., Hou, Y., Xu, C., Chang, N., Wang, F., Hu, K., He, A., Luo, Y., Wang, J., et al. (2016). Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat Commun 7, 13787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, C.L., Zhu, S., He, M., Chen, D., Zhang, Q., Chen, Y., Yu, G., Liu, J., Xie, S.Q., Luo, F., et al. (2018). N6-methyladenine DNA modification in the human genome. Mol Cell 71, 306–318.e7.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Q., Wu, T.P., Gimple, R.C., Li, Z., Prager, B.C., Wu, Q., Yu, Y., Wang, P., Wang, Y., Gorkin, D.U., et al. (2018). N6-methyladenine DNA modification in glioblastoma. Cell 175, 1228–1243.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., Zhang, P., Xue, B., Cao, X., Ren, X., Wang, L., Sun, Y., Yang, H., and Zhang, L. (2020). Establishment of a marine nematode model for animal functional genomics, environmental adaptation and developmental evolution. bioRxiv 980219.

  • Xu, J., Li, X., Song, W., Wang, W., and Gao, S. (2019). Cyclin Cyc2p is required for micronuclear bouquet formation in Tetrahymena thermophila. Sci China Life Sci 62, 668–680.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Maurer-Alcalá, X.X., Knight, R., Kosakovsky Pond, S.L., and Katz, L.A. (2019). Single-cell transcriptomics reveal a correlation between genome architecture and gene family evolution in ciliates. mBio 10.

  • Yao, B., Cheng, Y., Wang, Z., Li, Y., Chen, L., Huang, L., Zhang, W., Chen, D., Wu, H., Tang, B., et al. (2017). DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8, 1122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, L., D’Agostino, G., Loo, S.J., Wang, C.X., Su, L.P., Tan, S.H., Tee, G. Z., Pua, C.J., Pena, E.M., Cheng, R.B., et al. (2018). Early regenerative capacity in the porcine heart. Circulation 138, 2798–2808.

    Article  PubMed  Google Scholar 

  • Zhang, G., Huang, H., Liu, D., Cheng, Y., Liu, X., Zhang, W., Yin, R., Zhang, D., Zhang, P., Liu, J., et al. (2015a). N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Gualberto, D.G., Guo, X., Correa, P., Jee, C., and Garcia, L.R. (2015b). TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nat Commun 6, 6345.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y.F., Ocorr, K., Kang, G., Chen, J., Stainier, D.Y.R., et al. (2013). In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Zhao, J., Lv, X., Fan, J., Lu, Y., Zeng, T., Wu, H., Chen, L., and Zhao, Y. (2020). Analysis on gene modular network reveals morphogen-directed development robustness in Drosophila. Cell Discov 6, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Jia, S., Chen, Z., Chong, Y.L., Xie, H., Feng, D., Wu, X., Song, D.Z., Roy, S., and Zhao, C. (2018). Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet 50, 1666–1673.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C., and Malicki, J. (2007). Genetic defects of pronephric cilia in zebrafish. Mech Dev 124, 605–616.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, D., Liu, J., Wang, M., Zhang, X., and Zhou, M. (2019a). Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol 16, 203–212.

    Article  PubMed  Google Scholar 

  • Zhao, L., Ben-Yair, R., Burns, C.E., and Burns, C.G. (2019b). Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating zebrafish heart through Wnt pathway antagonism. Cell Rep 26, 546–554.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Borikova, A.L., Ben-Yair, R., Guner-Ataman, B., MacRae, C.A., Lee, R.T., Burns, C.G., and Burns, C.E. (2014). Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA 111, 1403–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Wang, L., Chi, C., Lan, W., and Su, Y. (2017). The emerging roles of phosphatases in Hedgehog pathway. Cell Commun Signal 15, 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, C., Wang, C., Liu, H., Zhou, Q., Liu, Q., Guo, Y., Peng, T., Song, J., Zhang, J., Chen, L., et al. (2018). Identification and analysis of adenine N6-methylation sites in the rice genome. Nat Plants 4, 554–563.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Mahlich, Y., Miller, M., and Bromberg, Y. (2018a). fusionDB: assessing microbial diversity and environmental preferences via functional similarity networks. Nucleic Acids Res 46, D535–D541.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Zhang, E., Zhao, M., Chong, Z., Fan, C., Tang, Y., Hunter, J.D., Borovjagin, A.V., Walcott, G.P., Chen, J.Y., et al. (2018b). Regenerative potential of neonatal porcine hearts. Circulation 138, 2809–2816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Qiu, Y., Chen, W., Nie, Q., and Lander, A.D. (2020). Scaling a Dpp morphogen gradient through feedback control of receptors and co-receptors. Dev Cell 53, 724–739.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771649, 32030015, 31772442, 31970506, 31922013, 32070437, 31872228, 31970475, and 31991194), the National Key Research and Development Program of China (2019YFE0190900), the Young Taishan Scholar, and Taishan Scholar Program of Shandong Province, China. Thanks are given to Ms. Tian Gan, graduate student of IEMB, Ocean University of China, for some line drawings in Figure 7. We apologize to all our colleagues whose original studies could not be cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibo Song, Shicui Zhang or Bo Dong.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Gao, F., Gao, S. et al. Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. Sci. China Life Sci. 64, 1236–1280 (2021). https://doi.org/10.1007/s11427-020-1915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1915-y

Keywords

Navigation