Skip to main content
Log in

Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits. The non-homologous end joining (NHEJ), which enables foreign DNA fragments to be randomly integrated into different chromosomal sites, shows prominent capability in genomic libraries construction. In this study, we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process, employment of defective Ura marker and optimization of iterative transformations, which enhanced genes integration efficiency by 4.67, 22.74 and 1.87 times, respectively. We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE, CrtB and CrtI, with 23.8 times higher production than rDNA integration through homologous recombination (HR). The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites, with the copy number up to 65 and 53, respectively, creating potential for further application of recombinase mediated genome rearrangement in Y. lipolytica. This work provides a high-efficient NHEJ-mediated genomic library technology, which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h. This novel technology also lays an excellent foundation for the development of other genetic technologies in Y. lipolytica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacman, S.R., Williams, S.L., and Moraes, C.T. (2009). Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37, 4218–4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Z., HamediRad, M., Xue, P., Xiao, H., Tasan, I., Chao, R., Liang, J., and Zhao, H. (2018). Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol 36, 505–508.

    Article  CAS  PubMed  Google Scholar 

  • Betancur, M.O., Reis, V.C.B., Nicola, A.M., De Marco, J.L., de Moraes, L. M.P., and Torres, F.A.G. (2017). Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker. Microb Cell Fact 16, 99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhargava, R., Sandhu, M., Muk, S., Lee, G., Vaidehi, N., and Stark, J.M. (2018). C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 9, 2484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, H.H.Y., Pannunzio, N.R., Adachi, N., and Lieber, M.R. (2017). Non-homologous DNA end joining and alternative pathways to doublestrand break repair. Nat Rev Mol Cell Biol 18, 495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, P., Yao, Y., Tang, N., Sadeyen, J.R., Sealy, J., Clements, A., Bhat, S., Munir, M., Bryant, J.E., and Iqbal, M. (2018). The application of NHEJ-CRISPR/Cas9 and Cre-Lox system in the generation of bivalent duck enteritis virus vaccine against avian influenza virus. Viruses 10, 81.

    Article  PubMed Central  Google Scholar 

  • Chen, Y., Xiao, W., Wang, Y., Liu, H., Li, X., and Yuan, Y. (2016). Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15, 113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Compton, J.L., Zamir, A., and Szalay, A.A. (1982). Insertion of nonhomologous DNA into the yeast genome mediated by homologous recombination with a cotransforming plasmid. Mol Gen Genet 188, 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Z., Jiang, X., Zheng, H., Qi, Q., and Hou, J. (2019). Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica. Biotech Bioeng 116, 354–363.

    Article  CAS  Google Scholar 

  • DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43, 491–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esher, S.K., Granek, J.A., and Alspaugh, J.A. (2015). Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genets Biol 82, 9–21.

    Article  CAS  Google Scholar 

  • Fickers, P., Le Dall, M.T., Gaillardin, C., Thonart, P., and Nicaud, J.M. (2004). New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55, 727–737.

    Article  Google Scholar 

  • Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C., and Shendure, J. (2014). Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher, E., Feizi, A., Bisschops, M.M.M., Hallström, B.M., Khoomrung, S., Siewers, V., and Nielsen, J. (2017). Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng 39, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E.H., Consiglio, A.L., MacEwen, K., Crabtree, D.V., Afshar, J., Nugent, R. L., Hamilton, M.A., et al. (2016). Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, S., Tong, Y., Wen, Z., Zhu, L., Ge, M., Chen, D., Jiang, Y., and Yang, S. (2016). Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43, 1085–1093.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Tong, Y., Zhu, L., Ge, M., Zhang, Y., Chen, D., Jiang, Y., and Yang, S. (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 41, 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., Chavez, A., Tung, A., Chan, Y., Kaas, C., Yin, Y., Cecchi, R., Garnier, S.L., Kelsic, E.D., Schubert, M., et al. (2018). High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol 36, 540–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliakis, G. (2009). Backup pathways of nhej in cells of higher eukaryotes: Cell cycle dependence. Radiother Oncol 92, 310–315.

    Article  CAS  PubMed  Google Scholar 

  • Jia, B., Wu, Y., Li, B.Z., Mitchell, L.A., Liu, H., Pan, S., Wang, J., Zhang, H.R., Jia, N., Li, B., et al. (2018). Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9, 1933.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, S. (2018). SCRaMbLE does the yeast genome shuffle. Nat Biotechnol 36, 503.

    Article  CAS  PubMed  Google Scholar 

  • Kazak, L., Reyes, A., and Holt, I.J. (2012). Minimizing the damage: Repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13, 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Kegel, A., Martinez, P., Carter, S.D., and Aström, S.U. (2006). Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res 34, 1633–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2003). Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22, 1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Dall, M.T., Nicaud, J.M., and Gaillardin, C. (1994). Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet 26, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Yang, L., Harris, R.S., Lin, L., Olson, T.L., Hamele, C.E., Feith, D. J., Loughran Jr, T.P., and Poss, M. (2019a). Retrovirus insertion site analysis of LGL leukemia patient genomes. BMC Med Genomics 12, 88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wu, Y., Ma, L., Guo, Z., Xiao, W., and Yuan, Y. (2019b). Loss of heterozygosity by SCRaMbLEing. Sci China Life Sci 62, 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Liang, D.W., Zhang, T., and Fang, H.H.P. (2008). Real-time quantifications of dominant anaerobes in an upflow reactor by polymerase chain reaction using a TaqMan probe. Water Sci Tech 57, 1851–1855.

    Article  CAS  Google Scholar 

  • Lieber, M.R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Q., Qi, H., Wu, Y., and Yuan, Y. (2015). Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae. Sci Rep 5, 15249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Jiang, X., Cui, Z., Wang, Z., Qi, Q., and Hou, J. (2019). Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene. Biotechnol Biofuels 12, 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longmuir, S., Akhtar, N., and MacNeill, S.A. (2019). Unexpected insertion of carrier DNA sequences into the fission yeast genome during CRISPR-Cas9 mediated gene deletion. BMC Res Notes 12, 191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv, Y., Edwards, H., Zhou, J., and Xu, P. (2019). Combining 26s rDNA and the Cre-loxP System for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS Synth Biol 8, 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Li, Y., Chen, X., Ding, M., Wu, Y., and Yuan, Y.J. (2019a). SCRaMbLE generates evolved yeasts with increased alkali tolerance. Microb Cell Fact 18, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Xia, J., Nielsen, J., Deng, Z., and Liu, T. (2019b). Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52, 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Muyrers, J.P.P., Zhang, Y., and Stewart, A.F. (2001). Techniques: Recombinogenic engineering-new options for cloning and manipulating DNA. Trends Biochem Sci 26, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Ochi, T., Blackford, A.N., Coates, J., Jhujh, S., Mehmood, S., Tamura, N., Travers, J., Wu, Q., Draviam, V.M., Robinson, C.V., et al. (2015). PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science 347, 185–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjha, L., Howard, S.M., and Cejka, P. (2018). Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 127, 187–214.

    Article  CAS  PubMed  Google Scholar 

  • Rossio, V., and Yoshida, S. (2011). Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. J Cell Biol 193, 445–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, K.R., Smith, J.D., Vonesch, S.C., Lin, G., Tu, C.S., Lederer, A.R., Chu, A., Suresh, S., Nguyen, M., Horecka, J., et al. (2018). Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 36, 512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, P., Moreno, S., and Reed, S.I. (1989). Conservation of mitotic controls in fission and budding yeasts. Cell 57, 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, C., Frogue, K., Ramesh, A., Misa, J., and Wheeldon, I. (2017). CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotech Bioeng 114, 2896–2906.

    Article  CAS  Google Scholar 

  • Shen, M.J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li, X., Xiao, W.H., Zhou, X., et al. (2018). Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9, 1934.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadi, S.K., Tellier-Lebègue, C., Nemoz, C., Drevet, P., Audebert, S., Roy, S., Meek, K., Charbonnier, J.B., and Modesti, M. (2016). PAXX is an accessory C-NHEJ factor that associates with Ku70 and has overlapping functions with XLF. Cell Rep 17, 541–555.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, D.B., Aboulhouda, S., Hysolli, E., Smith, C.J., Wang, S., Castanon, O., and Church, G.M. (2018). The future of multiplexed eukaryotic genome engineering. ACS Chem Biol 13, 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Veis, J., Klug, H., Koranda, M., and Ammerer, G. (2007). Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals. Mol Cell Biol 27, 8364–8373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, J.M., and Alper, H.S. (2016). Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genets Biol 89, 126–136.

    Article  CAS  Google Scholar 

  • Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., and Church, G.M. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Xie, Z.X., Ma, Y., Chen, X.R., Huang, Y.Q., He, B., Bin Jia, B., Li, B.Z., and Yuan, Y.J. (2018a). Ring synthetic chromosome V SCRaMbLE. Nat Commun 9, 3783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Liu, G.N., Liu, H., Zhang, L., Li, B.Z., Li, X., Liu, D., and Yuan, Y.J. (2018b). Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica. Biotechnol Biofuels 11, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Liu, H., Shi, L., Yu, X., Gu, Y., and Sun, X. (2018c). LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle 17, 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B.A., and Gill, R.T. (2010). Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28, 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Zhu, R.Y., Mitchell, L.A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y.X., Yang, Z.M., et al. (2018). In vitro DNA SCRaMbLE. Nat Commun 9, 1935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing, M., Yang, M., Huo, W., Feng, F., Wei, L., Jiang, W., Ning, S., Yan, Z., Li, W., Wang, Q., et al. (2015). Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway. Nat Commun 6, 6233.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z., Sharpe, P.L., Hong, S.P., Yadav, N.S., Xie, D., Short, D.R., Damude, H.G., Rupert, R.A., Seip, J.E., Wang, J., et al. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31, 734–740.

    Article  CAS  PubMed  Google Scholar 

  • Ye, R.W., Sharpe, P.L., and Zhu, Q. (2012). Bioengineering of oleaginous yeast Yarrowia lipolytica for lycopene production. Methods Mol Biol 898, 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Yun, M.H., and Hiom, K. (2009). CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J.L., Peng, Y.Z., Liu, D., Liu, H., Cao, Y.X., Li, B.Z., Li, C., and Yuan, Y.J. (2018). Gene repression via multiplex gRNA strategy in Y. lipolytica. Microb Cell Fact 17, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J.L., Cao, Y.X., Peng, Y.Z., Jin, C.C., Bai, Q.Y., Zhang, R.S., Liu, D., and Yuan, Y.J. (2019). High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Sci China Chem 62, 1007–1016.

    Article  CAS  Google Scholar 

  • Zhang, X.X., Zhang, T., Zhang, M., Fang, H.H.P., and Cheng, S.P. (2009). Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl Microbiol Biotechnol 82, 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C., Cui, Z., Zhao, X., Zhang, J., Zhang, L., Tian, Y., Qi, Q., and Liu, J. (2019). Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl Microbiol Biotechnol 103, 2181–2192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Program of the National Natural Science Foundation of China (21621004), the Natural Science Foundation of Tianjin City (19JCQNJC09200) and the Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiu Cao.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Q., Cheng, S., Zhang, J. et al. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica. Sci. China Life Sci. 64, 2114–2128 (2021). https://doi.org/10.1007/s11427-020-1885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1885-x

Keywords

Navigation