Skip to main content
Log in

High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Fatty alcohol biosynthesis by oleaginous microbes was a promising alternative to the petroleum or other non-renewable resources-based process. However, low titer and yield hamper the further industrial and commercial applications. Here, we developed an efficient strategy to coordinate fatty alcohol with glycolysis which achieved a ‘pull-and-push’ effect to improve fatty alcohol production. Transcript profiling indicated that genes in carbohydrate metabolism were up-regulated significantly in response to high fatty alcohol production. Based on it, 11 glycolysis promoters were screening to express fatty acyl-CoA reductase (FAR) to relate the fatty alcohol production with the up-regulated carbohydrate metabolism, and the fatty alcohol production reached 557 mg/L when FAR was expressed by the promoter of PFBAin. RNA-seq and qRT-PCR analysis demonstrated that a ‘pull-and-push’ effect caused by the coordination system dynamically enhanced the product synthesis flux from top to bottom, which was also testified and intensified by doubled glucose concentration. After manipulating structural and regulatory genes of lipid metabolism, the final strain achieved up to 5.75 g/L fatty alcohol production from modified YPD medium (containing 91 g/L glucose) in shake flasks, which represented the highest titer reported to date. This work offered a feasible and effective reference for dynamic manipulation of fatty acid-derived chemicals synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rupilius W, Ahmad S. Eur J Lipid Sci Technol, 2010, 109: 433–439

    Article  CAS  Google Scholar 

  2. Zhou YJ, Kerkhoven EJ, Nielsen J. Nat Energy, 2018, 3: 925–935

    Article  CAS  Google Scholar 

  3. Wang J, Xie ZX, Ma Y, Chen XR, Huang YQ, He B, Bin Jia B, Li BZ, Yuan YJ. Nat Commun, 2018, 9: 3783–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. Metabolic Eng, 2014, 22: 10–21

    Article  CAS  Google Scholar 

  5. Jia B, Wu Y, Li BZ, Mitchell LA, Liu H, Pan S, Wang J, Zhang HR, Jia N, Li B, Shen M, Xie ZX, Liu D, Cao YX, Li X, Zhou X, Qi H, Boeke JD, Yuan YJ. Nat Commun, 2018, 9: 1933–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu Y, Li BZ, Zhao M, Mitchell LA, Xie ZX, Lin QH, Wang X, Xiao WH, Wang Y, Zhou X, Liu H, Li X, Ding MZ, Liu D, Zhang L, Liu BL, Wu XL, Li FF, Dong XT, Jia B, Zhang WZ, Jiang GZ, Liu Y, Bai X, Song TQ, Chen Y, Zhou SJ, Zhu RY, Gao F, Kuang Z, Wang X, Shen M, Yang K, Stracquadanio G, Richardson SM, Lin Y, Wang L, Walker R, Luo Y, Ma PS, Yang H, Cai Y, Dai J, Bader JS, Boeke JD, Yuan YJ. Science, 2017, 355: eaaf4706

    Google Scholar 

  7. Xie ZX, Li BZ, Mitchell LA, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng BX, Liu HM, Wu XL, Feng Q, Zhang WZ, Liu W, Ding MZ, Li X, Zhao GR, Qiao JJ, Cheng JS, Zhao M, Kuang Z, Wang X, Martin JA, Stracquadanio G, Yang K, Bai X, Zhao J, Hu ML, Lin QH, Zhang WQ, Shen MH, Chen S, Su W, Wang EX, Guo R, Zhai F, Guo XJ, Du HX, Zhu JQ, Song TQ, Dai JJ, Li FF, Jiang GZ, Han SL, Liu SY, Yu ZC, Yang XN, Chen K, Hu C, Li DS, Jia N, Liu Y, Wang LT, Wang S, Wei XT, Fu MQ, Qu LM, Xin SY, Liu T, Tian KR, Li XN, Zhang JH, Song LX, Liu JG, Lv JF, Xu H, Tao R, Wang Y, Zhang TT, Deng YX, Wang YR, Li T, Ye GX, Xu XR, Xia ZB, Zhang W, Yang SL, Liu YL, Ding WQ, Liu ZN, Zhu JQ, Liu NZ, Walker R, Luo Y, Wang Y, Shen Y, Yang H, Cai Y, Ma PS, Zhang CT, Bader JS, Boeke JD, Yuan YJ. Science, 2017, 355: eaaf4704

    Article  CAS  PubMed  Google Scholar 

  8. Li YX, Wu Y, Ma L, Guo Z, Xiao WH, Yuan YJ. Sci China Life Sci, doi: 10.1007/s11427-019-9504-5

  9. Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S. Biotechnol Biofuels, 2016, 9: 107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M. Biotechnol Biofuels, 2016, 9: 227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teixeira PG, Ferreira R, Zhou YJ, Siewers V, Nielsen J. Microb Cell Fact, 2017, 16: 45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Nat Commun, 2016, 7: ncomms11709–11717

    Google Scholar 

  13. Cao YX, Xiao WH, Liu D, Zhang JL, Ding MZ, Yuan YJ. Metabolic Eng, 2015, 29: 113–123

    Article  CAS  Google Scholar 

  14. Wahlen BD, Oswald WS, Seefeldt LC, Barney BM. Appl Environ Microbiol, 2009, 75: 2758–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willis RM, Wahlen BD, Seefeldt LC, Barney BM. Biochemistry, 2011, 50: 10550–10558

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Chen S, Chen J, Zhou J, Wang Y, Yang M, Qi X, Xing J, Wang Q, Ma Y. Microb Cell Fact, 2016, 15: 129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaczmarzyk D, Cengic I, Yao L, Hudson EP. Metabolic Eng, 2018, 45: 59–66

    Article  CAS  Google Scholar 

  18. Fillet S, Gibert J, Suárez B, Lara A, Ronchel C, Adrio JL. J Ind Microbiol Biotechnol, 2015, 42: 1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheng J, Stevens J, Feng X. Sci Rep, 2016, 6: 26884–26894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng X, Lian J, Zhao H. Metabolic Eng, 2015, 27: 10–19

    Article  CAS  Google Scholar 

  21. Darvishi F, Ariana M, Marella ER, Borodina I. Appl Microbiol Biotechnol, 2018, 102: 5925–5938

    Article  CAS  PubMed  Google Scholar 

  22. Darvishi F, Fathi Z, Ariana M, Moradi H. Biochem Eng J, 2017, 127: 87–96

    Article  CAS  Google Scholar 

  23. Madzak C. Mol Biotechnol, 2018, 60: 621–635

    Article  CAS  PubMed  Google Scholar 

  24. Zeng SY, Liu HH, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Eur J Lipid Sci Technol, 2018, 120: 1700352–1700361

    Article  CAS  Google Scholar 

  25. Xu P, Qiao K, Ahn WS, Stephanopoulos G. Proc Natl Acad Sci USA, 2016, 113: 10848–10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS. Nat Commun, 2014, 5: 3131–3140

    Article  CAS  PubMed  Google Scholar 

  27. Kerkhoven EJ, Kim YM, Wei S, Nicora CD, Fillmore TL, Purvine SO, Webb-Robertson BJ, Smith RD, Baker SE, Metz TO, Nielsen J. mBio, 2017, 8: e00857

    Google Scholar 

  28. Wasylenko TM, Ahn WS, Stephanopoulos G. Metabolic Eng, 2015, 30: 27–39

    Article  CAS  Google Scholar 

  29. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Prog Lipid Res, 2009, 48: 375–387

    Article  CAS  PubMed  Google Scholar 

  30. Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. NPJ Syst Biol Appl, 2016, 2: 16005–16011

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brockman IM, Prather KLJ. Biotech J, 2015, 10: 1360–1369

    Article  CAS  Google Scholar 

  32. Tan SZ, Prather KL. Curr Opin Chem Biol, 2017, 41: 28–35

    Article  CAS  PubMed  Google Scholar 

  33. Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Metabolic Eng, 2014, 24: 150–159

    Article  CAS  Google Scholar 

  34. Tai M, Stephanopoulos G. Metabolic Eng, 2013, 15: 1–9

    Article  CAS  Google Scholar 

  35. Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, Kumaran Ajikumar P, Stephanopoulos G. Metabolic Eng, 2015, 29: 56–65

    Article  CAS  Google Scholar 

  36. Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, Jiang Y, Yang S. J Ind Microbiol Biotechnol, 2016, 43: 1085–1093

    Article  CAS  PubMed  Google Scholar 

  37. Beopoulos A, Verbeke J, Bordes F, Guicherd M, Bressy M, Marty A, Nicaud JM. Appl Microbiol Biotechnol, 2014, 98: 251–262

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JL, Peng YZ, Liu D, Liu H, Cao YX, Li BZ, Li C, Yuan YJ. Microb Cell Fact, 2018, 17: 62–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwartz CM, Hussain MS, Blenner M, Wheeldon I. ACS Synth Biol, 2016, 5: 356–359

    Article  CAS  PubMed  Google Scholar 

  40. Gao Q, Cao X, Huang YY, Yang JL, Chen J, Wei LJ, Hua Q. ACS Synth Biol, 2018, 7: 1371–1380

    Article  CAS  PubMed  Google Scholar 

  41. Li B, Dewey CN. BMC BioInf, 2011, 12: 323

    Article  CAS  Google Scholar 

  42. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Genome Res, 2011, 21: 2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dulermo R, Brunel F, Dulermo T, Ledesma-Amaro R, Vion J, Trassaert M, Thomas S, Nicaud JM, Leplat C. Microb Cell Fact, 2017, 16: 31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blazeck J, Liu L, Redden H, Alper H. Appl Environ Microbiol, 2011, 77: 7905–7914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holkenbrink C, Dam MI, Kildegaard KR, Beder J, Dahlin J, Doménech Belda D, Borodina I. Biotechnol J, 2018, 13: 1700543

    Article  CAS  Google Scholar 

  46. Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Nat Biotechnol, 2006, 24: 79–88

    Article  CAS  PubMed  Google Scholar 

  47. Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ. Biotechnol Bioeng, 2016, 113: 842–851

    Article  CAS  PubMed  Google Scholar 

  48. Dulermo R, Gamboa-Meléndez H, Ledesma-Amaro R, Thévenieau F, Nicaud JM. Biochim Biophysica Acta, 2015, 1851: 1202–1217

    Article  CAS  Google Scholar 

  49. Fakas S. Eng Life Sci, 2017, 17: 292–302

    Article  CAS  PubMed  Google Scholar 

  50. d’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, Dev I, Nhan M, Gin J, Reider Apel A, Petzold CJ, Singh S, Simmons BA, Mukhopadhyay A, García Martín H, Keasling JD. Metabolic Eng, 2017, 42: 115–125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21621004), and Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JL., Cao, YX., Peng, YZ. et al. High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Sci. China Chem. 62, 1007–1016 (2019). https://doi.org/10.1007/s11426-019-9456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9456-y

Keywords

Navigation