Skip to main content
Log in

Design and synthesis of novel 1,3-diene bridged chiral atropoisomeric diphosphine ligands for asymmetric hydrogenation of α-dehydro amino ketones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of novel atropisomeric diphosphine ligands termed TanPhos were designed and synthesized, which has a smaller bite angle compared with that of other ligands such as BINAP. TanPhos showed high reactivity and enantioselectivity in the rhodium-catalyzed asymmetric hydrogenation of a-dehydro amino ketones, and up 99% yield and 99% ee were obtained for a wide range of chiral α-amino ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ojima I. Editor Catalytic Asymmetric Synthesis. 3rd Ed. Hoboken: John Wiley & Sons Inc., 2010

    Book  Google Scholar 

  2. Lin G-Q, Li Y-M, Chan ASC. Principles and Applications of Asymmetric Synthesis. Hoboken: John Wiley & Sons Inc., 2001

    Book  Google Scholar 

  3. Jacobsen EN, Pfaltz A, Yamamoto H, Ed. Comprehensive Asymmetric Catalysis. Heidelberg: Springer, 1999

    Google Scholar 

  4. Li HH, Zhang JY, Li S, Wang YB, Cheng JK, Xiang SH, Tan B. Sci China Chem, 2022, 65: 1142–1148

    Article  CAS  Google Scholar 

  5. Li X, Sun J. Sci China Chem, 2022, 65: 3–4

    Article  CAS  Google Scholar 

  6. Gao F, Li J, Ahmad T, Luo Y, Zhang Z, Yuan Q, Huo X, Song T, Zhang W. Sci China Chem, 2022, 65: 1968–1977

    Article  CAS  Google Scholar 

  7. Kagan HB, Dang TP. J Am Chem Soc, 2002, 94: 6429–6433

    Article  Google Scholar 

  8. Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ. J Am Chem Soc, 2002, 99: 5946–5952

    Article  Google Scholar 

  9. Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J Am Chem Soc, 2002, 102: 7932–7934

    Article  Google Scholar 

  10. Burk MJ, Feaster JE, Harlow RL. Tetrahedron-Asymmetry, 1991, 2: 569–592

    Article  CAS  Google Scholar 

  11. Burk MJ. J Am Chem Soc, 2002, 113: 8518–8519

    Article  Google Scholar 

  12. Burk MJ, Feaster JE, Harlow RL. Organometallics, 2002, 9: 2653–2655

    Article  Google Scholar 

  13. Imamoto T, Watanabe J, Wada Y, Masuda H, Yamada H, Tsuruta H, Matsukawa S, Yamaguchi K. J Am Chem Soc, 1998, 120: 1635–1636

    Article  CAS  Google Scholar 

  14. Tang W, Zhang X. Angew Chem Int Ed, 2002, 41: 1612–1614

    Article  CAS  Google Scholar 

  15. Xie JH, Wang LX, Fu Y, Zhu SF, Fan BM, Duan HF, Zhou QL. J Am Chem Soc, 2003, 125: 4404–4405

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Xie F, Zhang W. Tetrahedron Lett, 2007, 48: 585–588

    Article  CAS  Google Scholar 

  17. Wang X, Meng F, Wang Y, Han Z, Chen YJ, Liu L, Wang Z, Ding K. Angew Chem Int Ed, 2012, 51: 9276–9282

    Article  CAS  Google Scholar 

  18. Zhang W, Chi Y, Zhang X. Acc Chem Res, 2007, 40: 1278–1290

    Article  CAS  PubMed  Google Scholar 

  19. Lei A, Wu S, He M, Zhang X. J Am Chem Soc, 2004, 126: 1626–1627

    Article  CAS  PubMed  Google Scholar 

  20. Tang W, Wu S, Zhang X. J Am Chem Soc, 2003, 125: 9570–9571

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Qian H, Longmire J, Zhang X. J Org Chem, 2000, 65: 6223–6226

    Article  CAS  PubMed  Google Scholar 

  22. Qiu L, Kwong FY, Wu J, Lam WH, Chan S, Yu WY, Li YM, Guo R, Zhou Z, Chan ASC. J Am Chem Soc, 2006, 128: 5955–5965

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Zhou L, Li W, Zhang X. J Org Chem, 2008, 73: 1143–1146

    Article  CAS  PubMed  Google Scholar 

  24. Tan X, Gao S, Zeng W, Xin S, Yin Q, Zhang X. J Am Chem Soc, 2018, 140: 2024–2027

    Article  CAS  PubMed  Google Scholar 

  25. Wang C, Yang G, Zhuang J, Zhang W. Tetrahedron Lett, 2010, 51: 2044–2047

    Article  CAS  Google Scholar 

  26. Xu Y, Liu D, Deng Y, Zhou Y, Zhang W. Angew Chem Int Ed, 2021, 60: 23602–23607

    Article  CAS  Google Scholar 

  27. Xu Y, Luo Y, Ye J, Deng Y, Liu D, Zhang W. J Am Chem Soc, 2022, 144: 20078–20089

    Article  CAS  PubMed  Google Scholar 

  28. Doherty S, Knight JG, Robins EG, Scanlan TH, Champkin PA, Clegg W. J Am Chem Soc, 2001, 123: 5110–5111

    Article  CAS  PubMed  Google Scholar 

  29. Miyaji T, Xi Z, Nakajima K, Takahashi T. Organometallics, 2001, 20: 2859–2863

    Article  CAS  Google Scholar 

  30. Negishi E, Cederbaum FE, Takahashi T. Tetrahedron Lett, 1986, 27: 2829–2832

    Article  CAS  Google Scholar 

  31. Fagan PJ, Nugent WA. J Am Chem Soc, 2002, 110: 2310–2312

    Article  Google Scholar 

  32. Chen GQ, Huang JM, Lin BJ, Shi C, Zhao LY, Ma BD, Ding XB, Yin Q, Zhang X. CCS Chem, 2020, 2: 468–477

    Article  CAS  Google Scholar 

  33. Ozawa F, Kubo A, Matsumoto Y, Hayashi T, Nishioka E, Yanagi K, Moriguchi K. Organometallics, 2002, 12: 4188–4196

    Article  Google Scholar 

  34. Huo XH, Xie JH, Wang QS, Zhou QL. Adv Synth Catal, 2007, 349: 2477–2484

    Article  CAS  Google Scholar 

  35. McClure DE, Arison BH, Jones JH, Baldwin JJ. J Org Chem, 2002, 46: 2431–2433

    Article  Google Scholar 

  36. Sun T, Hou G, Ma M, Zhang X. Adv Synth Catal, 2011, 353: 253–256

    Article  CAS  Google Scholar 

  37. Zhang Z, Hu Q, Wang Y, Chen J, Zhang W. OrgLett, 2015, 17: 5380–5383

    CAS  Google Scholar 

  38. Hu Q, Chen J, Zhang Z, Liu Y, Zhang W. Org Lett, 2016, 18: 1290–1293

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew Chem Int Ed, 2014, 53: 8467–8470

    Article  CAS  Google Scholar 

  40. Zhao Q, Li S, Huang K, Wang R, Zhang X. Org Lett, 2013, 15: 4014–4017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X. Zhang acknowledges the National Key R&D Program of China (2021YFA1500201), the Stable Support Plan Program of Shenzhen Natural Science Fund (20200925161222002), the Key-Area Research and Development Program of Guangdong Province (2020B010188001), the Innovative Team of Universities in Guangdong Province (2020KCXTD016), and the National Natural Science Foundation of China (21991113). G.-Q. Chen gratefully acknowledges the Guangdong Basic and Applied Basic Research Foundation (2022B1515020055), the National Natural Science Foundation of China (22171129) and Shenzhen Science and Technology Innovation Committee (JCYJ20210324104202007) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Tan, Xiaobing Ding, Gen-Qiang Chen or Xumu Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1798_MOESM1_ESM.pdf

Design and Synthesis of Novel 1,3-Diene Bridged Chiral Atropoisomeric Diphosphine Ligands for Asymmetric Hydrogenation of α-Dehydro Amino Ketones

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Gao, S., Yang, C. et al. Design and synthesis of novel 1,3-diene bridged chiral atropoisomeric diphosphine ligands for asymmetric hydrogenation of α-dehydro amino ketones. Sci. China Chem. 66, 2847–2851 (2023). https://doi.org/10.1007/s11426-023-1798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1798-1

Navigation