Skip to main content
Log in

Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2022

This article has been updated

Abstract

By capitalizing on the capability of photoredox catalysis to generate reactive radical intermediate under mild conditions, we established a photocatalytic cross-coupling protocol that could deliver both derivatives from 1-bromo-2-naphthols in combination with 2-naphthols or 2-naphthylamines. This distinct activation mode could overcome structural or electronic limitation associated with conventional coupling pathways. Additionally, a novel kinetic resolution protocol of unprotected BINOLs has been established with azodicarboxylates via chiral phosphoric acid (CPA) catalysis. Selectivity factor of up to 175 could be achieved and delivered to both enantiomers in atropisomerically enriched form after a simple work-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Chen Y, Yekta S, Yudin AK. Chem Rev, 2003, 103: 3155–3212

    Article  CAS  PubMed  Google Scholar 

  2. Kocovský P, Vyskocil S, Smrcina M. Chem Rev, 2003, 103: 3213–3246

    Article  PubMed  CAS  Google Scholar 

  3. Akiyama T. Chem Rev, 2007, 107: 5744–5758

    Article  CAS  PubMed  Google Scholar 

  4. Ding K, Li X, Ji B, Guo H, Kitamura M. COS, 2005, 2: 499–545

    Article  CAS  Google Scholar 

  5. Zhou QL. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley-VCH, 2011

    Book  Google Scholar 

  6. Noyori R, Takaya H. Acc Chem Res, 1990, 23: 345–350

    Article  CAS  Google Scholar 

  7. Brunel JM. Chem Rev, 2007, 107: PR1–PR45

    Article  CAS  Google Scholar 

  8. Yang X, Toste FD. J Am Chem Soc, 2015, 137: 3205–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev, 2011, 111: 563–639

    Article  CAS  PubMed  Google Scholar 

  10. Kozlowski MC, Morgan BJ, Linton EC. Chem Soc Rev, 2009, 38: 3193–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smyth JE, Butler NM, Keller PA. Nat Prod Rep, 2015, 32: 1562–1583

    Article  CAS  PubMed  Google Scholar 

  12. Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew Chem Int Ed, 2009, 48: 6398–6401

    Article  CAS  Google Scholar 

  13. Laplante SR, D Fader L, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SPF, Edwards PJ. J Med Chem, 2011, 54: 7005–7022

    Article  CAS  PubMed  Google Scholar 

  14. LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem, 2011, 6: 505–513

    Article  CAS  PubMed  Google Scholar 

  15. Pu L. Chem Rev, 1998, 98: 2405–2494

    Article  CAS  PubMed  Google Scholar 

  16. Hartley CS, Lazar C, Wand MD, Lemieux RP. J Am Chem Soc, 2002, 124: 13513–13518

    Article  CAS  PubMed  Google Scholar 

  17. Wen K, Yu S, Huang Z, Chen L, Xiao M, Yu X, Pu L. J Am Chem Soc, 2015, 137: 4517–4524

    Article  CAS  PubMed  Google Scholar 

  18. Takaishi K, Yasui M, Ema T. J Am Chem Soc, 2018, 140: 5334–5338

    Article  CAS  PubMed  Google Scholar 

  19. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081–10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang YB, Tan B. Acc Chem Res, 2018, 51: 534–547

    Article  CAS  PubMed  Google Scholar 

  21. Cheng JK, Xiang SH, Li S, Ye L, Tan B. Chem Rev, 2021, 121: 4805–4902

    Article  CAS  PubMed  Google Scholar 

  22. Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem Soc Rev, 2015, 44: 3418–3430

    Article  CAS  PubMed  Google Scholar 

  23. Lassaletta JM. Atropisomerism and Axial Chirality, Singapore: World Scientific Publishing, 2019

    Book  Google Scholar 

  24. Tan B. Axially Chiral Compounds: Asymmetric Synthesis and Applications. Weinheim: Wiley-VCH, 2021

    Book  Google Scholar 

  25. Wencel-Delord J, Colobert F. Synopen, 2020, 4: 107–115

    Article  CAS  Google Scholar 

  26. Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord Chem Rev, 2016, 308: 131–190

    Article  CAS  Google Scholar 

  27. Qi LW, Li S, Xiang SH, Wang JJ, Tan B. Nat Catal, 2019, 2: 314–323

    Article  CAS  Google Scholar 

  28. Ding WY, Yu P, An QJ, Bay KL, Xiang SH, Li S, Chen Y, Houk KN, Tan B. Chem, 2020, 6: 2046–2059

    Article  CAS  Google Scholar 

  29. Coombs G, Sak MH, Miller SJ. Angew Chem Int Ed, 2020, 59: 2875–2880

    Article  CAS  Google Scholar 

  30. Wang JZ, Zhou J, Xu C, Sun H, Kürti L, Xu QL. J Am Chem Soc, 2016, 138: 5202–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu G, Fu W, Liu G, Senanayake CH, Tang W. J Am Chem Soc, 2014, 136: 570–573

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Chen D, Tang W. Synlett, 2016, 27: 2183–2200

    Article  CAS  Google Scholar 

  33. Yang H, Sun J, Gu W, Tang W. J Am Chem Soc, 2020, 142: 8036–8043

    Article  CAS  PubMed  Google Scholar 

  34. Shen D, Xu Y, Shi SL. J Am Chem Soc, 2019, 141: 14938–14945

    Article  CAS  PubMed  Google Scholar 

  35. Wang H. Chirality, 2010, 22: 827–837

    Article  CAS  PubMed  Google Scholar 

  36. Nakajima M, Miyoshi I, Kanayama K, Hashimoto S, Noji M, Koga K. J Org Chem, 1999, 64: 2264–2271

    Article  CAS  Google Scholar 

  37. Li X, Yang J, Kozlowski MC. Org Lett, 2001, 3: 1137–1140

    Article  CAS  PubMed  Google Scholar 

  38. Hewgley JB, Stahl SS, Kozlowski MC. J Am Chem Soc, 2008, 130: 12232–12233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J Org Chem, 2003, 68: 5500–5511

    Article  CAS  PubMed  Google Scholar 

  40. Luo Z, Liu Q, Gong L, Cui X, Mi A, Jiang Y. Angew Chem Int Ed, 2002, 41: 4532–4535

    Article  CAS  Google Scholar 

  41. Guo QX, Wu ZJ, Luo ZB, Liu QZ, Ye JL, Luo SW, Cun LF, Gong LZ. J Am Chem Soc, 2007, 129: 13927–13938

    Article  CAS  PubMed  Google Scholar 

  42. Hon SW, Li CH, Kuo JH, Barhate NB, Liu YH, Wang Y, Chen CT. Org Lett, 2001, 3: 869–872

    Article  CAS  PubMed  Google Scholar 

  43. Egami H, Katsuki T. J Am Chem Soc, 2009, 131: 6082–6083

    Article  CAS  PubMed  Google Scholar 

  44. Irie R, Masutani K, Katsuki T, Synlett, 2000, 2000: 1433–1436

    Article  Google Scholar 

  45. Egami H, Matsumoto K, Oguma T, Kunisu T, Katsuki T. J Am Chem Soc, 2010, 132: 13633–13635

    Article  CAS  PubMed  Google Scholar 

  46. Narute S, Parnes R, Toste FD, Pappo D. J Am Chem Soc, 2016, 138: 16553–16560

    Article  CAS  PubMed  Google Scholar 

  47. Tian JM, Wang AF, Yang JS, Zhao XJ, Tu YQ, Zhang SY, Chen ZM. Angew Chem Int Ed, 2019, 58: 11023–11027

    Article  CAS  Google Scholar 

  48. Zhao XJ, Li ZH, Ding TM, Tian JM, Tu YQ, Wang AF, Xie YY. Angew Chem Int Ed, 2021, 60: 7061–7065

    Article  CAS  Google Scholar 

  49. Hayashi H, Ueno T, Kim C, Uchida T. Org Lett, 2020, 22: 1469–1474

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi H, Ueno T, Kim C, Uchida T. Org Lett, 2020, 22: 1469–1474

    Article  CAS  PubMed  Google Scholar 

  51. Yuan H, Du Y, Liu F, Guo L, Sun Q, Feng L, Gao H. Chem Commun, 2020, 56: 8226–8229

    Article  CAS  Google Scholar 

  52. Zhang J, Qi L, Li S, Xiang S, Tan B. Chin J Chem, 2020, 38: 1503–1514

    Article  CAS  Google Scholar 

  53. Zhang JW, Xiang SH, Li S, Tan B. Molecules, 2021, 26: 3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang JW, Jiang F, Chen YH, Xiang SH, Tan B. Sci China Chem, 2021, 64: 1515–1521

    Article  CAS  Google Scholar 

  55. Link A, Sparr C. Chem Soc Rev, 2018, 47: 3804–3815

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka K. Chem Asian J, 2009, 4: 508–518

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Q, Peng C, Wang YT, Zhan G, Han B. Org Chem Front, 2021, 8: 2772–2785

    Article  CAS  Google Scholar 

  58. Witzig RM, Fäseke VC, Häussinger D, Sparr C. Nat Catal, 2019, 2: 925–930

    Article  CAS  Google Scholar 

  59. Takano H, Shiozawa N, Imai Y, Kanyiva KS, Shibata T. J Am Chem Soc, 2020, 142: 4714–4722

    Article  CAS  PubMed  Google Scholar 

  60. Xu K, Li W, Zhu S, Zhu T. Angew Chem Int Ed, 2019, 58: 17625–17630

    Article  CAS  Google Scholar 

  61. Di Iorio N, Crotti S, Bencivenni G. Chem Rec, 2019, 19: 2095–2104

    Article  CAS  PubMed  Google Scholar 

  62. Yang G, Guo D, Meng D, Wang J. Nat Commun, 2019, 10: 3062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lu S, Poh SB, Rong ZQ, Zhao Y. Org Lett, 2019, 21: 6169–6172

    Article  CAS  PubMed  Google Scholar 

  64. Munday ES, Grove MA, Feoktistova T, Brueckner AC, Walden DM, Young CM, Slawin AMZ, Campbell AD, Cheong PHY, Smith AD. Angew Chem Int Ed, 2020, 59: 7897–7905

    Article  CAS  Google Scholar 

  65. Yao QJ, Zhang S, Zhan BB, Shi BF. Angew Chem Int Ed, 2017, 56: 6617–6621

    Article  CAS  Google Scholar 

  66. Liao G, Yao QJ, Zhang ZZ, Wu YJ, Huang DY, Shi BF. Angew Chem Int Ed, 2018, 57: 3661–3665

    Article  CAS  Google Scholar 

  67. Liao G, Li B, Chen HM, Yao QJ, Xia YN, Luo J, Shi BF. Angew Chem Int Ed, 2018, 57: 17151–17155

    Article  CAS  Google Scholar 

  68. Liao G, Chen HM, Xia YN, Li B, Yao QJ, Shi BF. Angew Chem Int Ed, 2019, 58: 11464–11468

    Article  CAS  Google Scholar 

  69. Ma G, Sibi MP. Chem Eur J, 2015, 21: 11644–11657

    Article  CAS  PubMed  Google Scholar 

  70. Liu W, Jiang Q, Yang X. Angew Chem Int Ed, 2020, 59: 23598–23602

    Article  CAS  Google Scholar 

  71. Fang S, Tan JP, Pan J, Zhang H, Chen Y, Ren X, Wang T. Angew Chem Int Ed, 2021, 60: 14921–14930

    Article  CAS  Google Scholar 

  72. Lu S, Ng SVH, Lovato K, Ong JY, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat Commun, 2019, 10: 3061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Aoyama H, Tokunaga M, Kiyosu J, Iwasawa T, Obora Y, Tsuji Y. J Am Chem Soc, 2005, 127: 10474–10475

    Article  CAS  PubMed  Google Scholar 

  74. Lu S, Poh SB, Zhao Y. Angew Chem Int Ed, 2014, 53: 11041–11045

    Article  CAS  Google Scholar 

  75. Ma G, Deng J, Sibi MP. Angew Chem Int Ed, 2014, 53: 11818–11821

    Article  CAS  Google Scholar 

  76. Jones BA, Balan T, Jolliffe JD, Campbell CD, Smith MD. Angew Chem Int Ed, 2019, 58: 4596–4600

    Article  CAS  Google Scholar 

  77. Crabtree RH. Chem Rev, 2015, 115: 127–150

    Article  CAS  PubMed  Google Scholar 

  78. Smrcina M, Vyskocil S, Maca B, Polasek M, Claxton TA, Abbott AP, Kocovsky P. J Org Chem, 1994, 59: 2156–2163

    Article  CAS  Google Scholar 

  79. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Curran DP, Ko SB. Tetrahedron Lett, 1998, 39: 6629–6632

    Article  CAS  Google Scholar 

  81. Arceo E, Montroni E, Melchiorre P. Angew Chem Int Ed, 2014, 53: 12064–12068

    Article  CAS  Google Scholar 

  82. Esumi N, Suzuki K, Nishimoto Y, Yasuda M. Org Lett, 2016, 18: 5704–5707

    Article  CAS  PubMed  Google Scholar 

  83. Zheng D, Studer A. Angew Chem Int Ed, 2019, 58: 15803–15807

    Article  CAS  Google Scholar 

  84. Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. Angew Chem Int Ed, 2020, 59: 9485–9490

    Article  CAS  Google Scholar 

  85. Wang J, Zhao Y, Gao H, Gao GL, Yang C, Xia W. Asian J Org Chem, 2017, 6: 1402–1407

    Article  CAS  Google Scholar 

  86. Kautsky H. Trans Faraday Soc, 1939, 35: 216–219

    Article  CAS  Google Scholar 

  87. Kuijpers KPL, Bottecchia C, Cambié D, Drummen K, König NJ, Noël T. Angew Chem Int Ed, 2018, 57: 11278–11282

    Article  CAS  Google Scholar 

  88. Lemos A, Lemaire C, Luxen A. Adv Synth Catal, 2019, 361: 1500–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee DS, Kim CS, Iqbal N, Park GS, Son KS, Cho EJ. Org Lett, 2019, 21: 9950–9953

    Article  CAS  PubMed  Google Scholar 

  90. Jin C, Zhuang X, Sun B, Li D, Zhu R. Asian J Org Chem, 2019, 8: 1490–1494

    Article  CAS  Google Scholar 

  91. Quintavalla A, Veronesi R, Carboni D, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Adv Synth Catal, 2021, 363: 3267–3282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825105), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Guangdong Innovative Program (2019BT02Y335), the Shenzhen Special Funds (JCYJ20190812-112603598, JCYJ20210324120205016), the Shenzhen Nobel Prize Scientists Laboratory Project (C17213101) and the SUSTech Special Fund for the Construction of High-Level Universities (G02216302). The authors appreciate the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HH., Zhang, JY., Li, S. et al. Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Sci. China Chem. 65, 1142–1148 (2022). https://doi.org/10.1007/s11426-022-1246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1246-8

Keywords

Navigation