Skip to main content
Log in

Asymmetric synthesis of bedaquiline based on bimetallic activation and non-covalent interaction promotion strategies

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bedaquiline (BDQ), approved by Food and Drug Administration (FDA) in 2012 as the first anti-tuberculosis-specific drug in the last 40 years, is viewed as one of the world’s most promising treatments for tuberculosis (TB). Due to the stereoselective construction of the Csp3—Csp3 bond with vicinal stereocenters of BDQ and its analogues being an unsolved challenge, there have not been any reports concerning its asymmetric synthesis for the current industrial production process until now. Herein, we have successfully developed a cooperative bimetallic system for the asymmetric synthesis of BDQ under the guidance of density functional theory (DFT) computations. Based on the optimized conditions, BDQ could be synthesized with excellent enantioselectivity (>99% ee) and diastereoselectivity (16:1 dr). A 5-g scale reaction was also conducted with comparably excellent results, showing its potential for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu P, Lill H, Bald D. Biochim Biophys Acta, 2014, 1837: 1208–1218

    Article  CAS  PubMed  Google Scholar 

  2. Smith Ii TC, Aldridge BB. Science, 2019, 364: 1234–1235

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. Global Tuberculosis Report 2020. Vol. 148. World Health Organization, 2020

  4. Abdool Karim Q, Abdool Karim SS. Science, 2020, 369: 366–368

    Article  CAS  PubMed  Google Scholar 

  5. De Rycker M, Baragaña B, Duce SL, Gilbert IH. Nature, 2018, 559: 498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gygli SM, Loiseau C, Jugheli L, Adamia N, Trauner A, Reinhard M, Ross A, Borrell S, Aspindzelashvili R, Maghradze N, Reither K, Beisel C, Tukvadze N, Avaliani Z, Gagneux S. Nat Med, 2021, 27: 1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andries K, Verhasselt P, Guillemont J, Gohlmann HWH, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. Science, 2005, 307: 223–227

    Article  CAS  PubMed  Google Scholar 

  8. Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RPG, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, McNeeley DF. N Engl J Med, 2009, 360: 2397–2405

    Article  CAS  PubMed  Google Scholar 

  9. Jones D. Nat Rev Drug Discov, 2013, 12: 175–176

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland HS, Tong AST, Choi PJ, Blaser A, Franzblau SG, Cooper CB, Upton AM, Lotlikar M, Denny WA, Palmer BD. Bioorg Med Chem, 2020, 28: 115213–115225

    Article  CAS  PubMed  Google Scholar 

  11. Yao R, Wang B, Fu L, Li L, You K, Li YG, Lu Y. Microbiology Spectrum, 2022, 10: e02477-21

  12. http://www.tballiance.org/portfolio/compound/tbaj-587-diarylquinoline, accessed 24th August 2019

  13. http://www.tballiance.org/portfolio/compound/tbaj-876-diarylquinoline, accessed 24th August 2019

  14. Kalia D, Kumar KSA, Meena G, Sethi KP, Sharma R, Trivedi P, Khan SR, Verma AS, Singh S, Sharma S, Roy KK, Kant R, Krishnan MY, Singh BN, Sinha S, Chaturvedi V, Saxena AK, Dikshit DK. MedChemComm, 2015, 6: 1554–1563

    Article  CAS  Google Scholar 

  15. Choi PJ, Sutherland HS, Tong AST, Blaser A, Franzblau SG, Cooper CB, Lotlikar MU, Upton AM, Guillemont J, Motte M, Queguiner L, Andries K, van den Broeck W, Denny WA, Palmer BD. Bioorg Med Chem Lett, 2017, 27: 5190–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vjecha MJ, Tiberi S, Zumla A. Nat Rev Drug Discov, 2018, 17: 607–608

    Article  CAS  PubMed  Google Scholar 

  17. Sutherland HS, Tong AST, Choi PJ, Conole D, Blaser A, Franzblau SG, Cooper CB, Upton AM, Lotlikar MU, Denny WA, Palmer BD. Bioorg Med Chem, 2018, 26: 1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarathy JP, Ragunathan P, Shin J, Cooper CB, Upton AM, Grüber G, Dick T. Antimicrob Agents Chemother, 2019, 63: e01191–19

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Calvert MB, Furkert DP, Cooper CB, Brimble MA. Bioorg Med Chem Lett, 2020, 30: 127172–127181

    Article  CAS  PubMed  Google Scholar 

  20. Choi PJ, Conole D, Sutherland HS, Blaser A, Tong AST, Cooper CB, Upton AM, Palmer BD, Denny WA. Molecules, 2020, 25: 1423–1456

    Article  CAS  PubMed Central  Google Scholar 

  21. For reviews: (a) Christoffers J, Baro A. Quaternary Stereocentres: Challenges and Solutions for Organic Synthesis. Weinheim: Wiley-VCH, 2005

  22. Beletskaya IP, Nájera C, Yus M. Chem Rev, 2018, 118: 5080–5200

    Article  CAS  PubMed  Google Scholar 

  23. Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J Am Chem Soc, 2009, 131: 6946–6948

    Article  CAS  PubMed  Google Scholar 

  24. Quasdorf KW, Overman LE. Nature, 2014, 516: 181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science, 2016, 353: 144–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andries K, Gestel JV. Use of substituted quinoline derivatives for the treatment of drug resistant mycobacterial diseases. European Patant, 04102402.7, 2004-05-28

  27. Saga Y, Motoki R, Makino S, Shimizu Y, Kanai M, Shibasaki M. J Am Chem Soc, 2010, 132: 7905–7907

    Article  CAS  PubMed  Google Scholar 

  28. Chandrasekhar S, Babu GSK, Mohapatra DK. Eur J Org Chem, 2011, 2011: 2057–2061

    Article  Google Scholar 

  29. Lubanyana H, Arvidsson PI, Govender T, Kruger HG, Naicker T. ACS Omega, 2020, 5: 3607–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. For selected patents: (a) Gestel JV, Guillemont J, Venet M, Decrane L, Vernier D, Odds F, Csoka I, Andries K. Quinoline derivatives and their use as mycobacterial inhibitors. European Patent, 1527050B1, 2003-07-18

  31. Porstmann F, Horns S, Bader T. Process for preparing (alpha S, beta R)-6-bromo-alpha-[2-(dimethylamine)ethyl]-2-methoxy-alpha-1-naphthalenyl-beta-phenyl-3-quinolineethanol. European Patent, 05104482.4, 2005-05-25

  32. Hegyi JF, Aelterman W, Lang Y, Stokbroekx SCM, Leys C, van Remoortere PJM, Faure A. Fumarate salt of (alpha S, Beta R)-6-bromo-alpha-[2-(dimethylamino)ethyl]-2-methoxy-alpha-1-naphthalenyl-beta-phenyl-3-quinolineethanol. European Patent, 06125443.9, 2006-12-05

  33. Zhao X, Huang Y, Zheng Z, Lin Y, Chen Z. Chiral inducer for synthesizing (1S,2R)-bedaquiline. China Patent, 106866525.A, 2017-03-24

  34. Li S, Zhong W, Li P, Xiao J, Zheng Z, Xie Y, Zhao G, Wang X, Wang L, Li X, Zhou X. Aromatic butan-2-ol compounds, preparation methods and uses thereof. China Patent, 102249935.A, 2010-05-17

  35. Guillemont J, Meyer C, Koul A, Andries K. Diastereomers, enantiomers and bioactivity. TMC207: A new candidate for the treatment of tuberculosis. In: Carreira, EM, Yamamoto H, Eds. Comprehensive Chirality. Volume 1: Biological Significance-pharmacology, Pharmaceutical Agrochemical. Amsterdam: Elsevier, 2012. 54–69

    Chapter  Google Scholar 

  36. Li J, Li Y, Bing S, Wu X, Zhou A, Huang L, Jin R, Wang J, Jiang M, Wang L. Preparation method for bedaquiline. China Patent, 105085396.A, 2014-05-07

  37. For selected papers: (a) Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science, 2013, 340: 1065–1068

    Article  CAS  PubMed  Google Scholar 

  38. Krautwald S, Schafroth MA, Sarlah D, Carreira EM. J Am Chem Soc, 2014, 136: 3020–3023

    Article  CAS  PubMed  Google Scholar 

  39. Naesborg L, Halskov KS, Tur F, Mønsted SMN, Jørgensen KA. Angew Chem Int Ed, 2015, 54: 10193–10197

    Article  CAS  Google Scholar 

  40. Sandmeier T, Krautwald S, Zipfel HF, Carreira EM. Angew Chem Int Ed, 2015, 54: 14363–14367

    Article  CAS  Google Scholar 

  41. Jiang X, Beiger JJ, Hartwig JF. J Am Chem Soc, 2017, 139: 87–90

    Article  CAS  PubMed  Google Scholar 

  42. Cruz FA, Dong VM. J Am Chem Soc, 2017, 139: 1029–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S. Nature, 2017, 549: 374–378

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Zhang R, Zhang Q, Zi W. J Am Chem Soc, 2021, 143: 10948–10962

    Article  CAS  PubMed  Google Scholar 

  45. Zhang MM, Wang YN, Wang BC, Chen XW, Lu LQ, Xiao WJ. Nat Commun, 2019, 10: 2716–2742

    Article  PubMed  PubMed Central  Google Scholar 

  46. Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat Catal, 2020, 3: 48–54

    Article  CAS  Google Scholar 

  47. Zhang J, Gao YS, Gu BM, Yang WL, Tian BX, Deng WP. ACS Catal, 2021, 11: 3810–3821

    Article  CAS  Google Scholar 

  48. Zhu DX, Liu JG, Xu MH. J Am Chem Soc, 2021, 143: 8583–8589

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Zhu M, Zi W. Chem, 2022, 8: 1–13

    Article  Google Scholar 

  50. Zhu M, Wang P, Zhang Q, Tang W, Zi W. Angew Chem Int Ed, 2022, 61: e202207621

  51. For selected papers: (a) Huo X, He R, Zhang X, Zhang W. J Am Chem Soc, 2016, 138: 11093–11096

    Article  CAS  PubMed  Google Scholar 

  52. He R, Liu P, Huo X, Zhang W. Org Lett, 2017, 19: 5513–5516

    Article  CAS  PubMed  Google Scholar 

  53. Huo X, Zhang J, Fu J, He R, Zhang W. J Am Chem Soc, 2018, 140: 2080–2084

    Article  CAS  PubMed  Google Scholar 

  54. He R, Huo X, Zhao L, Wang F, Jiang L, Liao J, Zhang W. J Am Chem Soc, 2020, 142: 8097–8103

    Article  CAS  PubMed  Google Scholar 

  55. Huo X, Zhao L, Luo Y, Wu Y, Sun Y, Li G, Gridneva T, Zhang J, Ye Y, Zhang W. CCS Chem, 2022, 4: 1720–1731

    Article  CAS  Google Scholar 

  56. Zhang J, Huo X, Xiao J, Zhao L, Ma S, Zhang W. J Am Chem Soc, 2021, 143: 12622–12632

    Article  CAS  PubMed  Google Scholar 

  57. Peng Y, Huo X, Luo Y, Wu L, Zhang W. Angew Chem Int Ed, 2021, 60: 24941–24949

    Article  CAS  Google Scholar 

  58. For selected papers: (a) Jiang X, Boehm P, Hartwig JF. J Am Chem Soc, 2018, 140: 1239–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. J Am Chem Soc, 2018, 140: 1508–1513

    Article  CAS  PubMed  Google Scholar 

  60. Xu SM, Wei L, Shen C, Xiao L, Tao HY, Wang CJ. Nat Commun, 2019, 10: 5553–5563

    Article  PubMed  PubMed Central  Google Scholar 

  61. He ZT, Jiang X, Hartwig JF. J Am Chem Soc, 2019, 141: 13066–13073

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Q, Yu H, Shen L, Tang T, Dong D, Chai W, Zi W. J Am Chem Soc, 2019, 141: 14554–14559

    Article  CAS  PubMed  Google Scholar 

  63. Zhu M, Zhang Q, Zi W. Angew Chem Int Ed, 2021, 60: 6545–6552

    Article  CAS  Google Scholar 

  64. Yang SQ, Wang YF, Zhao WC, Lin GQ, He ZT. J Am Chem Soc, 2021, 143: 7285–7291

    Article  CAS  PubMed  Google Scholar 

  65. Masson-Makdissi J, Prieto L, Abel-Snape X, Lautens M. Angew Chem Int Ed, 2021, 60: 16932–16936

    Article  CAS  Google Scholar 

  66. Xiao L, Wei L, Wang CJ. Angew Chem Int Ed, 2021, 60: 24930–24940

    Article  CAS  Google Scholar 

  67. Wei L, Wang C. Chin J Chem, 2021, 39: 15–24

    Article  CAS  Google Scholar 

  68. Chai W, Guo B, Zhang Q, Zi W. Chem Catal, 2022, 2: 1428–1439

    Article  Google Scholar 

  69. Xu Y, Wang H, Yang Z, Zhou Y, Liu Y, Feng X. Chem, 2022, 8: 2011–2022

    Article  CAS  Google Scholar 

  70. Huo X, Li G, Wang X, Zhang W. Angew Chem Int Ed, 2022, e20221008 (in press)

  71. Wang H, Xu Y, Zhang F, Liu Y, Feng X. Angew Chem Int Ed, 2022, 61: 202115715

    Google Scholar 

  72. Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Angew Chem Int Ed, 2022, 61: 202206517

    Google Scholar 

  73. Wang W, Zhang F, Liu Y, Feng X. Angew Chem Int Ed, 2022, 61: e202208837

  74. Kim B, Kim Y, Lee SY. J Am Chem Soc, 2021, 143: 73–79

    Article  CAS  PubMed  Google Scholar 

  75. Huo X, He R, Fu J, Zhang J, Yang G, Zhang W. J Am Chem Soc, 2017, 139: 9819–9822

    Article  CAS  PubMed  Google Scholar 

  76. Xia J, Hirai T, Katayama S, Nagae H, Zhang W, Mashima K. ACS Catal, 2021, 11: 6643–6655

    Article  CAS  Google Scholar 

  77. Peng Y, Han C, Luo Y, Li G, Huo X, Zhang W. Angew Chem Int Ed, 2022, 61: e202203448

    CAS  Google Scholar 

  78. Just before the submission of this manuscript, a paper about the diastereoselective synthesis of BDQ for the current process was published in which the dr was increased to 2.4:1: Mear S, Lucas T, Ahlqvist G, Robey J, Dietz JP, Khairnar P, Maity S, Williams C, Snead D, Nelson R, Opatz T, Jamison T. Chem Eur J, 2022, e202201311 (in press)

  79. Only one example about the enantio- and diastereoselective addition of secondary carbanions to ketones was found: Ko YK, Im C, Do J, Park YS. Eur J Org Chem, 2014, 2014(16): 3460–3467

    Article  CAS  Google Scholar 

  80. Wallenhauer S, Seppelt K. Inorg Chem, 1995, 34: 116–119

    Article  CAS  Google Scholar 

  81. De Vries TS, Goswami A, Liou LR, Gruver JM, Jayne E, Collum DB. J Am Chem Soc, 2009, 131: 13142–13154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Armstrong DR, García-Alvarez P, Kennedy AR, Mulvey RE, Parkinson JA. Angew Chem Int Ed, 2010, 49: 3185–3188

    Article  CAS  Google Scholar 

  83. Reich HJ. Chem Rev, 2013, 113: 7130–7178

    Article  CAS  PubMed  Google Scholar 

  84. Reyes-Rodríguez GJ, Algera RF, Collum DB. J Am Chem Soc, 2017, 139: 1233–1244

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JEP, Carlson RMK, Schreiner PR. J Am Chem Soc, 2012, 134: 13641–13650

    Article  CAS  PubMed  Google Scholar 

  86. Rösel S, Balestrieri C, Schreiner PR. Chem Sci, 2017, 8: 405–410

    Article  PubMed  Google Scholar 

  87. Petit S, Coquerel G, Meyer C, Guillemont J. J Mol Struct, 2007, 837: 252–256

    Article  CAS  Google Scholar 

  88. Ishigaki Y, Shimajiri T, Takeda T, Katoono R, Suzuki T. Chem, 2018, 4: 795–806

    Article  CAS  Google Scholar 

  89. Pratt LM, Khan IM. J Mol Struct, 1996, 367: 33–40

    Article  CAS  Google Scholar 

  90. Armstrong DR, Davies RP, Raithby PR, Snaith R, Wheatley, AEH. New J Chem, 1999, 23: 499–507

    Article  CAS  Google Scholar 

  91. Al-Masri HT, Sieler J, Hey-Hawkins E. Appl Organomet Chem, 2003, 17: 63–67

    Article  CAS  Google Scholar 

  92. Veličković SR, Koteski VJ, Belošević Čavor JN, Djordjević VR, Cvetićanin JM, Djustebek JB, Veljković MV, Nešković OM. Chem PhysLett, 2007, 448: 151–155

    Google Scholar 

  93. Neufeld R, Teuteberg TL, Herbst-Irmer R, Mata RA, Stalke D. J Am Chem Soc, 2016, 138: 4796–4806

    Article  CAS  PubMed  Google Scholar 

  94. Lu G, Liu RY, Yang Y, Fang C, Lambrecht DS, Buchwald SL, Liu P. J Am Chem Soc, 2017, 139: 16548–16555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xi Y, Su B, Qi X, Pedram S, Liu P, Hartwig JF. J Am Chem Soc, 2020, 142: 18213–18222

    Article  CAS  PubMed  Google Scholar 

  96. Chen J, Zhang Z, Li B, Li F, Wang Y, Zhao M, Gridnev ID, Imamoto T, Zhang W. Nat Commun, 2018, 9: 5000–5009

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li B, Chen J, Zhang Z, Gridnev ID, Zhang W. Angew Chem Int Ed, 2019, 58: 7329–7334

    Article  CAS  Google Scholar 

  98. Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Angew Chem Int Ed, 2020, 59: 5371–5375

    Article  CAS  Google Scholar 

  99. Zhang J, Chen T, Wang Y, Zhou F, Zhang Z, Gridnev ID, Zhang W. Nat Sci, 2021, 1: e10021

    Google Scholar 

  100. Li B, Chen J, Liu D, Gridnev ID, Zhang W. Nat Chem, 2022, 14: 920–927

    Article  CAS  PubMed  Google Scholar 

  101. Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. J Am Chem Soc, 2020, 142: 9612–9624

    CAS  PubMed  Google Scholar 

  102. Xu H, Li B, Liu Z, Dang Y. ACS Catal, 2021, 11: 9008–9021

    Article  CAS  Google Scholar 

  103. Li B, Xu H, Dang Y, Houk KN. J Am Chem Soc, 2022, 144: 1971–1985

    Article  CAS  PubMed  Google Scholar 

  104. Bader RFW. Acc Chem Res, 1985, 18: 9–15

    Article  CAS  Google Scholar 

  105. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  106. Emamian S, Lu T, Kruse H, Emamian H. J Comput Chem, 2019, 40: 2868–2881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bill and Melinda Gates Foundation (INV-008413), the National Natural Science Foundation of China (21831005), and Shanghai Jiao Tong University. We appreciate Dr. George Wang, Dr. Christopher Cooper, Dr. Rajneesh Taneja, Dr. John Dillon, Dr. Trevor Laird and Dr. Jordi Robinson for their helpful discussions. We thank Dr. Niya Bowers (BMGF) for the project management and the Instrumental Analysis Center of SJTU for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanbin Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Dedicated to Professor Guoqiang Lin on the occasion of his 80th birthday.

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Li, J., Ahmad, T. et al. Asymmetric synthesis of bedaquiline based on bimetallic activation and non-covalent interaction promotion strategies. Sci. China Chem. 65, 1968–1977 (2022). https://doi.org/10.1007/s11426-022-1387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1387-7

Keywords

Navigation