Skip to main content
Log in

Highly stable Eu-coordination polymer exhibiting the highest quantum yield

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lanthanide luminescent materials with high quantum yield and thermal stability are of key importance for their practical application. Here we report crystal structures and luminescent properties of [Eu(pfbz)2(phen)Cl] (1) and [Tb(pfbz)2(phen)Cl] (2) (pfbz = Pentafluorobenzoate). Single-crystal analysis reveals that both 1 and 2 crystallize in a polar space group of Cmc21. Investigation on their luminescent properties indicates that the solid-state quantum yields of 1 and 2 are 97.7% and 90.7%, respectively, while their efficiency of the sensitization process is as high as 100%, revealing that polar structures are more favorable to obtain high quantum yields. Thermogravimetric analysis reveals that both 1 and 2 can be stable up to 240 °C. More importantly, temperature-dependent luminescent spectra of 1 indicate its luminescent intensity at 612 nm only decreased by 5% from room temperature to 373 K, whereas at 373 K, its luminescent intensity remains almost constant for 36 h. Considering that 1 represents the highest quantum yield among known Eu-coordination polymers and its performance as the LED material is better than that of commercially widely used luminescent materials of (Sr,Ca)AlSiN3:Eu (630 nm) and (Sr,Ca)AlSiN3:Eu (640 nm), the present work provides an excellent substitute for commercial LED materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gálico DA, Kitos AA, Ovens JS, Sigoli FA, Murugesu M. Angew Chem Int Ed, 2021, 60: 6130–6136

    Article  Google Scholar 

  2. Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Coord Chem Rev, 2022, 462: 214523–214562

    Article  CAS  Google Scholar 

  3. Deng Y, Zheng X, Zheng H, Xu H, Li F, Long L, Zheng L. Sci China Mater, 2021, 64: 2883–2888

    Article  CAS  Google Scholar 

  4. Hu SJ, Guo XQ, Zhou LP, Yan DN, Cheng PM, Cai LX, Li XZ, Sun QF. J Am Chem Soc, 2022, 144: 4244–4253

    Article  CAS  PubMed  Google Scholar 

  5. Tang Y, Wu H, Cao W, Cui Y, Qian G. Adv Opt Mater, 2021, 9: 2001817–2001831

    Article  CAS  Google Scholar 

  6. Lu DF, Hong ZF, Xie J, Kong XJ, Long LS, Zheng LS. Inorg Chem, 2017, 56: 12186–12192

    Article  CAS  PubMed  Google Scholar 

  7. Rocha J, Carlos LD, Paz FAA, Ananias D. Chem Soc Rev, 2011, 40: 926–940

    Article  CAS  PubMed  Google Scholar 

  8. Bünzli JCG. Coord Chem Rev, 2015, 293–294: 19–47

    Article  Google Scholar 

  9. Hasegawa Y, Kitagawa Y. J Mater Chem C, 2019, 7: 7494–7511

    Article  CAS  Google Scholar 

  10. Du MH, Chen LQ, Jiang LP, Liu WD, Long LS, Zheng L, Kong XJ. J Am Chem Soc, 2022, 144: 5653–5660

    Article  CAS  PubMed  Google Scholar 

  11. Zheng H, Deng YK, Ye MY, Xu QF, Kong XJ, Long LS, Zheng LS. Inorg Chem, 2020, 59: 12404–12409

    Article  CAS  PubMed  Google Scholar 

  12. Liu WD, Li GJ, Xu H, Du MH, Long LS, Zheng LS, Kong XJ. Inorg Chem, 2022, 61: 9849–9854

    Article  CAS  PubMed  Google Scholar 

  13. Werts MHV, Jukes RTF, Verhoeven JW. Phys Chem Chem Phys, 2002, 4: 1542–1548

    Article  CAS  Google Scholar 

  14. Mason SF, Peacock RD, Stewart B. Mol Phys, 1975, 30: 1829–1841

    Article  CAS  Google Scholar 

  15. Miyata K, Nakagawa T, Kawakami R, Kita Y, Sugimoto K, Nakashima T, Harada T, Kawai T, Hasegawa Y. Chem Eur J, 2011, 17: 521–528

    Article  CAS  PubMed  Google Scholar 

  16. Biju S, Raj DBA, Reddy MLP, Kariuki BM. Inorg Chem, 2006, 45: 10651–10660

    Article  CAS  PubMed  Google Scholar 

  17. Hasegawa Y, Yamamuro M, Wada Y, Kanehisa N, Kai Y, Yanagida S. J Phys Chem A, 2003, 107: 1697–1702

    Article  CAS  Google Scholar 

  18. Zhao YR, Zheng H, Chen LQ, Chen HJ, Kong XJ, Long LS, Zheng LS. Inorg Chem, 2019, 58: 10078–10083

    Article  CAS  PubMed  Google Scholar 

  19. Hasegawa Y, Wada Y, Yanagida S, Kawai H, Yasuda N, Nagamura T. Appl Phys Lett, 2003, 83: 3599–3601

    Article  CAS  Google Scholar 

  20. Wei C, Sun B, Cai Z, Zhao Z, Tan Y, Yan W, Wei H, Liu Z, Bian Z, Huang C. Inorg Chem, 2018, 57: 7512–7515

    Article  CAS  PubMed  Google Scholar 

  21. Haas Y, Stein G. J Phys Chem, 1971, 75: 3677–3681

    Article  CAS  Google Scholar 

  22. Crosby GA, Whan RE, Alire RM. J Chem Phys, 1961, 34: 743–748

    Article  CAS  Google Scholar 

  23. Kleinerman M. J Chem Phys, 1969, 51: 2370–2381

    Article  CAS  Google Scholar 

  24. Varaksina EA, Taydakov IV, Ambrozevich SA, Selyukov AS, Lyssenko KA, Jesus LT, Freire RO. J Lumin, 2018, 196: 161–168

    Article  CAS  Google Scholar 

  25. Melnikov SN, Evstifeev IS, Nikolaveskii SA, Ananyev IV, Varaksina EA, Taydakov IV, Goloveshkin AS, Sidorov AA, Kiskin MA, Eremenko IL. New J Chem, 2021, 45: 13349–13359

    Article  CAS  Google Scholar 

  26. Wolbers MP, van Veggel FCJM, Snellink-Ruël BHM, Hofstraat JW, Geurts FAJ, Reinhoudt DN. J Am Chem Soc, 1997, 119: 138–144

    Article  CAS  Google Scholar 

  27. Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL. Adv Mater, 2009, 21: 509–534

    Article  CAS  PubMed  Google Scholar 

  28. Kalyakina AS, Utochnikova VV, Bushmarinov IS, Ananyev IV, Eremenko IL, Volz D, Rönicke F, Schepers U, Van Deun R, Trigub AL, Zubavichus YV, Kuzmina NP, Bräse S. Chem Eur J, 2015, 21: 17921–17932

    Article  CAS  PubMed  Google Scholar 

  29. Binnemans K. Coord Chem Rev, 2015, 295: 1–45

    Article  CAS  Google Scholar 

  30. Lazarides T, Alamiry MAH, Adams H, Pope SJA, Faulkner S, Weinstein JA, Ward MD. Dalton Trans, 2007, 1484

  31. Lam MHW, Lee DYK, Chiu SSM, Man KW, Wong WT. Eur J Inorg Chem, 2000, 2000: 1483–1488

    Article  Google Scholar 

  32. Puntus LN, Lyssenko KA, Pekareva IS, Bünzli JCG. J Phys Chem B, 2009, 113: 9265–9277

    Article  CAS  PubMed  Google Scholar 

  33. Lhoste J, Pérez-Campos A, Henry N, Loiseau T, Rabu P, Abraham F. Dalton Trans, 2011, 40: 9136–9144

    Article  CAS  PubMed  Google Scholar 

  34. Zucchi G, Murugesan V, Tondelier D, Aldakov D, Jeon T, Yang F, Thuéry P, Ephritikhine M, Geffroy B. Inorg Chem, 2011, 50: 4851–4856

    Article  CAS  PubMed  Google Scholar 

  35. Khistiaeva VV, Melnikov AS, Slavova SO, Sizov VV, Starova GL, Koshevoy IO, Grachova EV. Inorg Chem Front, 2018, 5: 3015–3027

    Article  CAS  Google Scholar 

  36. Zhao J, Zhu GH, Xie LQ, Wu YS, Wu HL, Zhou AJ, Wu ZY, Wang J, Chen YC, Tong ML. Dalton Trans, 2015, 44: 14424–14435

    Article  CAS  PubMed  Google Scholar 

  37. Zhang ZQ, Shen Q, Zhang Y, Yao YM, Lin J. Inorg Chem Commun, 2004, 7: 305–307

    Article  CAS  Google Scholar 

  38. Liu D, Zhou YN, Zhao J, Xu Y, Shen J, Wu M. J Mater Chem C, 2017, 5: 11620–11630

    Article  CAS  Google Scholar 

  39. Hirai Y, Nakanishi T, Kitagawa Y, Fushimi K, Seki T, Ito H, Hasegawa Y. Angew Chem Int Ed, 2016, 55: 12059–12062

    Article  CAS  Google Scholar 

  40. Nakamura K, Hasegawa Y, Kawai H, Yasuda N, Kanehisa N, Kai Y, Nagamura T, Yanagida S, Wada Y. J Phys Chem A, 2007, 111: 3029–3037

    Article  CAS  PubMed  Google Scholar 

  41. Piguet C, Buenzli JCG, Bernardinelli G, Hopfgartner G, Williams AF. J Am Chem Soc, 1993, 115: 8197–8206

    Article  CAS  Google Scholar 

  42. Yanagisawa K, Nakanishi T, Kitagawa Y, Seki T, Akama T, Kobayashi M, Taketsugu T, Ito H, Fushimi K, Hasegawa Y. Eur J Inorg Chem, 2015, 2015(28): 4769–4774

    Article  CAS  Google Scholar 

  43. Tsurui M, Kitagawa Y, Shoji S, Ohmagari H, Hasegawa M, Gon M, Tanaka K, Kobayashi M, Taketsugu T, Fushimi K, Hasegawa Y. J Phys Chem B, 2022, 126: 3799–3807

    Article  CAS  PubMed  Google Scholar 

  44. Bañares L. Nat Chem, 2019, 11: 103–104

    Article  PubMed  Google Scholar 

  45. Rajagopal SK, Mallia AR, Hariharan M. Phys Chem Chem Phys, 2017, 19: 28225–28231

    Article  CAS  PubMed  Google Scholar 

  46. Edinach EV, Uspenskaya YA, Gurin AS, Babunts RA, Asatryan HR, Romanov NG, Badalyan AG, Baranov PG. Phys Rev B, 2019, 100: 104435–104449

    Article  CAS  Google Scholar 

  47. Zhao Y, Zhai X, Shao L, Li L, Liu Y, Zhang X, Liu J, Meng F, Fu Y. J Mater Chem C, 2021, 9: 15840–15847

    Article  CAS  Google Scholar 

  48. Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW. J Am Chem Soc, 1995, 117: 9408–9414

    Article  CAS  Google Scholar 

  49. Wei M, Luo L, Cui R, Wang X, Chen J, Cai Z, Li X, Wei H, Wei C, Bian Z. Dyes Pigments, 2022, 206: 110650–110662

    Article  CAS  Google Scholar 

  50. Latva M, Takalo H, Mukkala VM, Matachescu C, Rodríguez-Ubis JC, Kankare J. J Lumin, 1997, 75: 149–169

    Article  CAS  Google Scholar 

  51. Sato S, Wada M. BCSJ, 1970, 43: 1955–1962

    Article  CAS  Google Scholar 

  52. Parker D. Coord Chem Rev, 2000, 205: 109–130

    Article  CAS  Google Scholar 

  53. Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z, Wang Y. Chem Mater, 2016, 28: 3515–3524

    Article  CAS  Google Scholar 

  54. Gaffuri P, Stolyarova E, Llerena D, Appert E, Consonni M, Robin S, Consonni V. Renew Sustain Energy Rev, 2021, 143: 110869–110884

    Article  CAS  Google Scholar 

  55. Koizuka T, Yanagisawa K, Hirai Y, Kitagawa Y, Nakanishi T, Fushimi K, Hasegawa Y. Inorg Chem, 2018, 57: 7097–7103

    Article  CAS  PubMed  Google Scholar 

  56. Wong KL, Bünzli JCG, Tanner PA. J Lumin, 2020, 224: 117256–117268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92161203, 21721001, 22022108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to La-Sheng Long.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting Information is available online at https://www.chem.scichina.com and https://www.link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, MY., Zhang, MX., Xu, QF. et al. Highly stable Eu-coordination polymer exhibiting the highest quantum yield. Sci. China Chem. 66, 1400–1405 (2023). https://doi.org/10.1007/s11426-023-1572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1572-7

Keywords

Navigation