Skip to main content
Log in

Photoluminescence Studies of Eu3+ Activated Y2Sr3B4O12 Phosphor for Photovoltaic Application

  • Published:
Journal of Applied Spectroscopy Aims and scope

Y2Sr3B4O12 phosphors doped with europium ions were synthesized by a modified conventional solid-state reaction method. Characterizations of the prepared samples, viz., X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and Commission Internationale de I’Eclairage were studied. The XRD analysis confirmed the formation of mixed phase due to polyborate and has a hexagonal crystalline yttrium orthoborate phosphor. SEM images showed the irregular morphology of the sample. The grain size distribution was broad and the average size was found to range from 2 μm to 100 nm. PL measurements showed excitation and emission characteristics of the prepared phosphor with different concentrations of the doping ion. From the emission spectra, it was clearly observed that the emission intensity of the magnetic dipole was higher than that of electric dipole transition owing to the Eu3+ ions occupying a higher symmetry site in the Y2Sr3B4O12 host. The intensity of PL increased with increasing concentration of the doping ion up to 2.0 mol.%; after that, the PL intensity decreased owing to the concentration-quenching phenomenon. The results indicated that Y2Sr3B4O12:Eu3+ phosphors can be selected as a potential candidate for solar cell/photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. J. Nieuwenhout, A. Van Dijk, P. E. Lasschuit, G. Van Roekel, V. A. P. Van Dijk, D. Hirsch, H. Arriaza, M. Hankins, B. D. Sharma, and H. Wade, Prog. Photovolt. Res. Appl., 9, 455–474 (2001).

    Article  Google Scholar 

  2. N. Kannan and D. Vakeesan, Renew. Sustain. Energy Rev., 62, 1092–1105 (2016).

    Article  Google Scholar 

  3. T. V. Ramachandra, R. Jain, and G. Krishnadas, Renew. Sustain. Energy Rev., 15, 3178–3186 (2011).

    Article  Google Scholar 

  4. M. J. Crane, D. M. Kroupa, and D. R. Gamelin, Energy Environ. Sci., 12, 2486–2495 (2019).

    Article  Google Scholar 

  5. W. Chang, L. Li, M. Dou, Y. Yan, S. Jiang, Y. Pan, M. Cui, Z. Wu, and X. Zhou, Mater. Res. Bull., 112, 109–114 (2019).

    Article  Google Scholar 

  6. C. S. Erickson, M. J. Crane, T. J. Milstein, and D. R. Gamelin, J. Phys. Chem. C, 123, 12474–12484 (2019).

    Article  Google Scholar 

  7. G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, Phys. Rev. B, 97, 1–13 (2018).

    Article  Google Scholar 

  8. Z. Xiaoxia, W. Xiaojun, Ch. Baojiu, M. Qingyu, D. Weihua, R. Guozhong, and Y. Yanmin, J. Alloys Compd., 433, 352–355 (2007).

    Article  Google Scholar 

  9. A. V. Zaushitsyn, V. V. Mikhailin, A. Yu. Romanenko, E. G. Khaikina, O. M. Basovich, V. A. Morozov, and B. I. Lazoryak, Inorg. Mater., 41, 766–772 (2005).

    Article  Google Scholar 

  10. S. Neeraj, N. Kijima, and A. K. Cheetham, Chem. Phys. Lett., 387, 271–276 (2004).

    Article  Google Scholar 

  11. E. Tomaszewicz, M. Guzik, J. Cybińska, and J. Legendziewicz, Helv. Chim. Acta, 92, 2274–2290 (2009).

    Article  Google Scholar 

  12. K. S. Sohn, D. H. Park, S. H. Cho, J. S. Kwak, and J. S. Kim, Chem. Mater., 18, 1768–1772 (2006).

    Article  Google Scholar 

  13. K. N. Shinde and S. J. Dhoble, J. Lumin., 28, 93–96 (2013).

    Google Scholar 

  14. Z. Zhou, N. F. Wang, N. Zhou, Z. X. He, S. Liu, Y. N. Liu, Z. W. Tian, Z. Y. Mao, and H. T. Hintzen, J. Phys. D, 46, 035104–035110 (2013).

    Article  ADS  Google Scholar 

  15. F. W. Mo, L. Y. Zhou, Q. Pang, F. Z. Gong, and Z. J. Liang, Ceram. Int., 38, 6289–6294 (2012).

    Article  Google Scholar 

  16. Q. Xiao, Q. T. Zhou, and M. Li, J. Lumin., 130, 1092–1094 (2010).

    Article  Google Scholar 

  17. S . M. Zhang, B. Zhu, S. F. Zhou, and J. R. Qiu, J. Soc. Inf. Display, 17, 507–510 (2009).

    Article  Google Scholar 

  18. F. Shen, D. W. He, H. L. Liu, and J. H. Xu, J. Lumin., 122123, 973–975 (2007).

    Article  Google Scholar 

  19. X. Zhang, H. Chen, and J. Kim, J. Rare Earth, 27, 270–279 (2009).

    Article  Google Scholar 

  20. N. Liu, D. Zhao, L. Yu, K. Zheng, and W. Qin, Coll. Surf. A: Physio Eng. Aspects, 363, 124–129 (2010).

    Article  Google Scholar 

  21. K. Sreebunpeng, W. Chewpraditkul, and M. Nikl, Radiat. Measur., 60, 42–45 (2014).

    Article  ADS  Google Scholar 

  22. Y. H. Wang, X. Guo, T. Endo, Y. Murakami, and M. Ushirozawa, J. Solid State Chem., 177, 2242–2248 (2004).

    Article  ADS  Google Scholar 

  23. V. Dubey, Jagjeet Kaur, Sadhana Agrawal, N. S. Suryanarayana, and K. V. R. Murthy, Superlatt. Microstruct., 67, 156–171 (2014).

  24. R. Tiwari, V. Dubey, Vijay Singh, and María Elena Zayas Saucedo, Luminescence: Theory and Applications of Rare Earth Activated Phosphors, Walter de Gruyter GmbH & Co KG (2021).

  25. V. Dubey, R. Tiwari, Raunak Kumar Tamrakar, Jagjeet Kaur, S. Dutta, Subrata Das, H. G. Visser, and S. Som, J. Lumin., 180, 169–176 (2016).

  26. N. Dubey, Marta Michalska-Domańska, Janita Saji, Vikas Dubey, and Jagjeet Kaur Saluja, in: Hybrid Perovskite Composite Materials, Woodhead Publishing (2021), pp. 169–180.

  27. V. Dubey, Sudipta Som, and Vijay Kumar, Luminescent Materials in Display and Biomedical Applications, CRC Press, Taylor & Francis Group (2021).

  28. J. Singh, D. Poelman, and V. Dubey, J. Mater. Sci.: Mater. Electron., 30, No. 23, 20665–20672 (2019).

  29. G. E. Malashkevich, A. G. Makhanek, A. V. Semchenko, V. E. Gaishun, I. M. Mel'nichenko, and E. N. Poddenezhnyi, Phys. Solid State, 41, 202–207 (1999).

    Article  ADS  Google Scholar 

  30. G. E. Malashkevich, V. N. Sigaev, G. I. Semkova, and B. Champagnon, Phys. Solid State, 46, 552–556 (2004).

    Article  ADS  Google Scholar 

  31. V. Dordevic, Z. Antic, M. G. Nikolic, and M. D. Dramicanin, J. Res. Phys., 37, No. 1, 47–54 (2013).

    Article  Google Scholar 

  32. J. G. Sole, L. E. Bausa, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, England (2005).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikas Dubey, M. C. Rao or Ravindranadh Koutavarapu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, p. 318, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, V., Mishra, A., Dubey, V. et al. Photoluminescence Studies of Eu3+ Activated Y2Sr3B4O12 Phosphor for Photovoltaic Application. J Appl Spectrosc 91, 457–462 (2024). https://doi.org/10.1007/s10812-024-01741-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01741-9

Keywords

Navigation