Skip to main content
Log in

Spatially-separated redox sites enabling selective atmospheric CO2 photoreduction to CH4

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

CO2 photoreduction to high-valued CH4 is highly attractive, whereas the CH4 selectivity and activity, especially under atmospheric CO2, is still unsatisfying. Here, we design spatially-separated redox sites on two-dimensional heterostructured nanosheets with loaded metal oxides, thus achieving high reactivity and selectivity of photocatalytic atmospheric CO2 reduction to CH4. Taking the synthetic In2O3/In2S3 nanosheets with loaded PdO quantum dots as a prototype, quasi in-situ X-ray photoelectron spectra reveal the Pd sites accumulate photogenerated holes for dissociating H2O and the In sites accept photoexcited electrons to activate CO2. Moreover, the Pd-OD bond is confirmed by in-situ Fourier-transform infrared spectra during the D2O labeling experiment, indicating the PdO quantum dots participate in H2O oxidation to supply hydrogen species for CO2 methanation. As a result, in a simulated air atmosphere, the PdO-In2O3/In2S3 nanosheets enable favorable atmospheric CO2-to-CH4 photoreduction with nearly 100% selectivity and ultralong stability of 240 h as well as CO2 conversion of 48.2%. This study opens an approach towards designing photocatalysts with spatially-separated redox sites to achieve efficient oxidation and reduction of CO2 photocatalysis to CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao P, Zhong L, Han B, He M, Sun Y. Angew Chem Int Ed, 2022, 61: e202210095

    CAS  Google Scholar 

  2. Chen Y, Kan M, Yan S, Zhang J, Liu K, Yan Y, Guan A, Lv X, Qian L, Zheng G. Chin J Catal, 2022, 43: 1703–1709

    Article  CAS  Google Scholar 

  3. Wang Y, Chen T, Chen F, Tang R, Huang H. Sci China Mater, 2022, 65: 3497–3503

    Article  CAS  Google Scholar 

  4. Li L, Sun Y, Xie Y. Sci China Chem, 2021, 65: 425–427

    Article  Google Scholar 

  5. Niu YN, Jin XH, Liao LL, Huang H, Yu B, Yu YM, Yu DG. Sci China Chem, 2021, 64: 1164–1169

    Article  CAS  Google Scholar 

  6. Humayun M, Ullah H, Shu L, Ao X, Tahir AA, Wang C, Luo W. Nano-Micro Lett, 2021, 13: 209

    Article  CAS  Google Scholar 

  7. Loh JYY, Kherani NP, Ozin GA. Nat Sustain, 2021, 4: 466–473

    Article  Google Scholar 

  8. Liang L, Ling P, Li Y, Li L, Liu J, Luo Q, Zhang H, Xu Q, Pan Y, Zhu J, Ye B, Sun Y. Sci China Chem, 2021, 64: 953–958

    Article  CAS  Google Scholar 

  9. Chen F, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 1411–1419

    Article  CAS  Google Scholar 

  10. Wang Z, Zhu J, Zu X, Wu Y, Shang S, Ling P, Qiao P, Liu C, Hu J, Pan Y, Zhu J, Sun Y, Xie Y. Angew Chem Int Ed, 2022, 61: e202203249

    CAS  Google Scholar 

  11. Shi X, Huang Y, Bo Y, Duan D, Wang Z, Cao J, Zhu G, Ho W, Wang L, Huang T, Xiong Y. Angew Chem Int Ed, 2022, 61: e202203063

    CAS  Google Scholar 

  12. Jiao X, Zheng K, Liang L, Li X, Sun Y, Xie Y. Chem Soc Rev, 2020, 49: 6592–6604

    Article  CAS  PubMed  Google Scholar 

  13. Zheng K, Wu Y, Zhu J, Wu M, Jiao X, Li L, Wang S, Fan M, Hu J, Yan W, Zhu J, Sun Y, Xie Y. J Am Chem Soc, 2022, 144: 12357–12366

    Article  CAS  PubMed  Google Scholar 

  14. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Nat Nano-tech, 2016, 11: 218–230

    Article  CAS  Google Scholar 

  15. Shao W, Wang S, Zhu J, Li X, Jiao X, Pan Y, Sun Y, Xie Y. Nano Res, 2021, 14: 4520–4527

    Article  CAS  Google Scholar 

  16. Ruan Q, Ma X, Li Y, Wu J, Wang Z, Geng Y, Wang W, Lin H, Wang L. Nanoscale, 2020, 12: 20522–20535

    Article  CAS  PubMed  Google Scholar 

  17. Chu C, Zhu Q, Pan Z, Gupta S, Huang D, Du Y, Weon S, Wu Y, Muhich C, Stavitski E, Domen K, Kim JH. Proc Natl Acad Sci USA, 2020, 117: 6376–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Guan BY, Lou XWD. J Am Chem Soc, 2018, 140: 5037–5040

    Article  CAS  PubMed  Google Scholar 

  19. Shemesh Y, Macdonald JE, Menagen G, Banin U. Angew Chem Int Ed, 2011, 50: 1185–1189

    Article  CAS  Google Scholar 

  20. Wang L, Cheng B, Zhang L, Yu J. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  21. Stathi P, Belles L, Deligiannakis Y. J Phys Chem C, 2022, 126: 14125–14137

    Article  CAS  Google Scholar 

  22. Ma Y, Yi X, Wang S, Li T, Tan B, Chen C, Majima T, Waclawik ER, Zhu H, Wang J. Nat Commun, 2022, 13: 1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Kim E, Kumar DP, Rangappa AP, Kim Y, Zhang Y, Kim TK. Angew Chem Int Ed, 2022, 61: e202113044

    Article  CAS  Google Scholar 

  24. Jiang X, Huang J, Bi Z, Ni W, Gurzadyan G, Zhu Y, Zhang Z. Adv Mater, 2022, 34: 2109330

    Article  CAS  Google Scholar 

  25. Liu P, Huang Z, Gao X, Hong X, Zhu J, Wang G, Wu Y, Zeng J, Zheng X. Adv Mater, 2022, 34: 2200057

    Article  CAS  Google Scholar 

  26. Long R, Li Y, Liu Y, Chen S, Zheng X, Gao C, He C, Chen N, Qi Z, Song L, Jiang J, Zhu J, Xiong Y. J Am Chem Soc, 2017, 139: 4486–4492

    Article  CAS  PubMed  Google Scholar 

  27. Zu X, Zhao Y, Li X, Chen R, Shao W, Wang Z, Hu J, Zhu J, Pan Y, Sun Y, Xie Y. Angew Chem Int Ed, 2021, 60: 13840–13846

    Article  CAS  Google Scholar 

  28. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Nat Energy, 2019, 4: 690–699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1502904, 2019YFA0210004, 2021YFA1501502), the National Natural Science Foundation of China (22125503, 21975242, U2032212, 21890754, 22002148), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CX2340007003) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-001). Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Additional information

Supporting information

The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflicts of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, M., Zhu, J. et al. Spatially-separated redox sites enabling selective atmospheric CO2 photoreduction to CH4. Sci. China Chem. 66, 1997–2003 (2023). https://doi.org/10.1007/s11426-022-1595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1595-9

Navigation