Skip to main content
Log in

A universal strategy for achieving dual cross-linked networks to obtain ultralong polymeric room temperature phosphorescence

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Efficient polymeric room-temperature phosphorescence (PRTP) with excellent processability and flexibility is highly desirable but still faces formidable challenge. Herein, a general strategy is developed for efficient PRTP through photo-polymerization of phosphor monomers and N-isopropylacrylamide (NIPAM) spontaneously without a crosslinker. Remarkably ultralong lifetime of 3.54 s with afterglow duration time of 25 s and decent phosphorescent quantum efficiency of 13% are achieved. This efficient PRTP has been demonstrated to be derived from the synergistic effect of the covalent and hydrogen bonds networks formed through photo-polymerization of NIPAM. The electron paramagnetic resonance (EPR) spectra confirmed that methyl radicals are generated under the irradiation of ultraviolet light and promote the formation of covalent cross-linking networks. This strategy has also been proved to be generalizable to several other phosphor monomers. Interestingly, the polymer films display ultrahigh temperature resistance with long afterglows even at 140 °C and unexampled ultralong lifetime of 2.45 s in aqueous solutions. This work provides a simple and feasible avenue to obtain efficient PRTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Q, Fan Y, Liao Q, Zhong C, Li Q, Li Z. Sci China Chem, 2022, 65: 918–925

    Article  CAS  Google Scholar 

  2. Zhou B, Qi Z, Yan D. Angew Chem Int Ed, 2022, 61: e202208735

    Article  CAS  Google Scholar 

  3. Liu R, Jiang T, Liu D, Ma X. Sci China Chem, 2022, 65: 1100–1104

    Article  CAS  Google Scholar 

  4. Liu XW, Zhao W, Wu Y, Meng Z, He Z, Qi X, Ren Y, Yu ZQ, Tang BZ. Nat Commun, 2022, 13: 3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou B, Yan D. Chem Sci, 2022, 13: 7429–7436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao G, Fang X, Ma YJ, Yan D. Adv Sci, 2022, 9: 2200992

    Article  CAS  Google Scholar 

  7. Li Q, Li Z. Acc Chem Res, 2020, 53: 962–973

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Su Y, Wu H, Wang Z, Wang C, Zheng Y, Zheng X, Gao L, Zhou Q, Yang Y, Chen X, Yang C, Zhao Y. J Am Chem Soc, 2021, 143: 13675–13685

    Article  CAS  PubMed  Google Scholar 

  9. Ma X, Wang J, Tian H. Acc Chem Res, 2019, 52: 738–748

    Article  CAS  PubMed  Google Scholar 

  10. Zhao W, He Z, Tang BZ. Nat Rev Mater, 2020, 5: 869–885

    Article  CAS  Google Scholar 

  11. Zhang T, Ma X, Wu H, Zhu L, Zhao Y, Tian H. Angew Chem Int Ed, 2020, 59: 11206–11216

    Article  CAS  Google Scholar 

  12. Lee D, Bolton O, Kim BC, Youk JH, Takayama S, Kim J. J Am Chem Soc, 2013, 135: 6325–6329

    Article  CAS  PubMed  Google Scholar 

  13. Kwon MS, Lee D, Seo S, Jung J, Kim J. Angew Chem Int Ed, 2014, 53: 11177–11181

    Article  CAS  Google Scholar 

  14. Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Angew Chem Int Ed, 2016, 55: 2181–2185

    Article  CAS  Google Scholar 

  15. Chen R, Guan Y, Wang H, Zhu Y, Tan X, Wang P, Wang X, Fan X, Xie HL. ACS Appl Mater Interfaces, 2021, 13: 41131–41139

    Article  CAS  PubMed  Google Scholar 

  16. Gong Y, Zhao L, Peng Q, Fan D, Yuan WZ, Zhang Y, Tang BZ. Chem Sci, 2015, 6: 4438–4444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang L, Chen B, Zhang X, Trindle CO, Liao F, Wang Y, Miao H, Luo Y, Zhang G. Angew Chem Int Ed, 2018, 57: 16046–16050

    Article  CAS  Google Scholar 

  18. Yang Y, Wang KZ, Yan D. Chem Commun, 2017, 53: 7752–7755

    Article  CAS  Google Scholar 

  19. Gong Y, Yang J, Fang M, Li Z. Cell Rep Phys Sci, 2022, 3: 100663

    Article  CAS  Google Scholar 

  20. Yan D. Sci China Chem, 2017, 60: 163–164

    Article  CAS  Google Scholar 

  21. Li D, Yang J, Fang M, Tang BZ, Li Z. Sci Adv, 2022, 8: eabl8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nie F, Zhou B, Wang KZ, Yan D. Chem Eng J, 2022, 430: 133084

    Article  CAS  Google Scholar 

  23. Zhang Y, Chen X, Xu J, Zhang Q, Gao L, Wang Z, Qu L, Wang K, Li Y, Cai Z, Zhao Y, Yang C. J Am Chem Soc, 2022, 144: 6107–6117

    Article  CAS  PubMed  Google Scholar 

  24. Cai S, Ma H, Shi H, Wang H, Wang X, Xiao L, Ye W, Huang K, Cao X, Gan N, Ma C, Gu M, Song L, Xu H, Tao Y, Zhang C, Yao W, An Z, Huang W. Nat Commun, 2019, 10: 4247

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Yin C, Wu W, Ma X. Sci China Chem, 2022, 65: 75–81

    Article  CAS  Google Scholar 

  26. Wang Z, Zhang Y, Wang C, Zheng X, Zheng Y, Gao L, Yang C, Li Y, Qu L, Zhao Y. Adv Mater, 2020, 32: 1907355

    Article  CAS  Google Scholar 

  27. Gu F, Ding B, Ma X, Tian H. Ind Eng Chem Res, 2020, 59: 1578–1583

    Article  CAS  Google Scholar 

  28. Dou X, Zhu T, Wang Z, Sun W, Lai Y, Sui K, Tan Y, Zhang Y, Yuan WZ. Adv Mater, 2020, 32: 2004768

    Article  CAS  Google Scholar 

  29. Gao H, Ma X. Aggregate, 2021, 2: e38

    CAS  Google Scholar 

  30. Thomas H, Pastoetter DL, Gmelch M, Achenbach T, Schlögl A, Louis M, Feng X, Reineke S. Adv Mater, 2020, 32: 2000880

    Article  CAS  Google Scholar 

  31. Tian R, Xu SM, Xu Q, Lu C. Sci Adv, 2020, 6: eaaz6107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou B, Yan D. Sci China Chem, 2019, 62: 291–292

    Article  CAS  Google Scholar 

  33. Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL. J Am Chem Soc, 2007, 129: 8942–8943

    Article  CAS  PubMed  Google Scholar 

  34. DeRosa CA, Kerr C, Fan Z, Kolpaczynska M, Mathew AS, Evans RE, Zhang G, Fraser CL. ACS Appl Mater Interfaces, 2015, 7: 23633–23643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma X, Xu C, Wang J, Tian H. Angew Chem Int Ed, 2018, 57: 10854–10858

    Article  CAS  Google Scholar 

  36. Gu L, Wu H, Ma H, Ye W, Jia W, Wang H, Chen H, Zhang N, Wang D, Qian C, An Z, Huang W, Zhao Y. Nat Commun, 2020, 11: 944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scherzer T, Knolle W, Naumov S, Elsner C, Buchmeiser MR. J Polym Sci Polym Chem, 2008, 46: 4905–4916

    Article  CAS  Google Scholar 

  38. Jönsson ES, Lee TY, Viswanathan K, Hoyle CE, Roper TM, Guymon CA, Nason C, Khudyakov IV. Prog Org Coatings, 2005, 52: 63–72

    Article  Google Scholar 

  39. Cramer NB, Scott JP, Bowman CN. Macromolecules, 2002, 35: 5361–5365

    Article  CAS  Google Scholar 

  40. Ryou MH, Lee YM, Cho KY, Han GB, Lee JN, Lee DJ, Choi JW, Park JK. Electrochim Acta, 2012, 60: 23–30

    Article  CAS  Google Scholar 

  41. Ono Y, Shikata T. J Am Chem Soc, 2006, 128: 10030–10031

    Article  CAS  PubMed  Google Scholar 

  42. Cunha C, Klein P, Rosenauer C, Scherf U, Seixas de Melo JS. Macromolecules, 2021, 54: 7612–7620

    Article  CAS  Google Scholar 

  43. Marpu S, Hu Z, Omary MA. Langmuir, 2010, 26: 15523–15531

    Article  CAS  PubMed  Google Scholar 

  44. Ko CH, Claude KL, Niebuur BJ, Jung FA, Kang JJ, Schanzenbach D, Frielinghaus H, Barnsley LC, Wu B, Pipich V, Schulte A, Müller-Buschbaum P, Laschewsky A, Papadakis CM. Macromolecules, 2020, 53: 6816–6827

    Article  CAS  Google Scholar 

  45. Yin Z, Gu M, Ma H, Jiang X, Zhi J, Wang Y, Yang H, Zhu W, An Z. Angew Chem Int Ed, 2021, 60: 2058–2063

    Article  CAS  Google Scholar 

  46. Lin F, Wang H, Cao Y, Yu R, Liang G, Huang H, Mu Y, Yang Z, Chi Z. Adv Mater, 2022, 34: 2108333

    Article  CAS  Google Scholar 

  47. Peng H, Xie G, Cao Y, Zhang L, Yan X, Zhang X, Miao S, Tao Y, Li H, Zheng C, Huang W, Chen R. Sci Adv, 2022, 8: eabk2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li P, Tan S, Wu Y, Wang C, Watanabe M. ACS Macro Lett, 2020, 9: 825–829

    Article  CAS  PubMed  Google Scholar 

  49. Wu C, Zhou S. Macromolecules, 1997, 30: 574–576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22175149, 21975215), the Natural Science Foundation of Hunan Province (2021JJ30661), and the Scientific Research Foundation of Hunan Provincial Education Department (19A486).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or He-Lou Xie.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Guan, Y., Long, C. et al. A universal strategy for achieving dual cross-linked networks to obtain ultralong polymeric room temperature phosphorescence. Sci. China Chem. 66, 1161–1168 (2023). https://doi.org/10.1007/s11426-022-1492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1492-x

Navigation