Skip to main content
Log in

In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report the in-situ investigation of the production of H2O2 in 5,10,15,20-tetra(4-methoxyphenyl)-21H,23H-porphyrin cobalt(II) (CoTMPP)-catalyzed oxygen reduction reaction (ORR) in neutral electrolytes by electrochemical scanning tunneling microscopy (ECSTM) at the molecular scale. The adsorption of OOH on active sites can be observed in STM images and is found to be correlated with the pH value of the electrolyte. The thermodynamic parameters of the formation of CoTMPP—OOH complex are extracted by the quantitative analysis of the STM images. Two stages of the ORR including the formation of H2O2 and further reduction of H2O2 at different reduction potentials can be revealed by electrochemical measurements. In-situ ECSTM experiments unambiguously identify the formation of the CoTMPP—OOH complex as the high contrast species and its reduction and oxidation process. This work provides the direct evidence for understanding the formation and transformation process of H2O2 at the molecular scale, which benefits the rational design of the high-efficiency electrocatalysts for ORR and H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe MK. Nature, 2012, 486: 43–51

    CAS  PubMed  Google Scholar 

  2. Cullen DA, Neyerlin KC, Ahluwalia RK, Mukundan R, More KL, Borup RL, Weber AZ, Myers DJ, Kusoglu A. Nat Energy, 2021, 6: 462–474

    CAS  Google Scholar 

  3. Leng Y, Yang B, Zhao Y, Xiang Z. J Energy Chem, 2022, 73: 549–555

    CAS  Google Scholar 

  4. Tang T, Ding L, Jiang Z, Hu JS, Wan LJ. Sci China Chem, 2020, 63: 1517–1542

    CAS  Google Scholar 

  5. Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Nat Catal, 2022, 5: 473–484

    CAS  Google Scholar 

  6. Zhu Y, Wang X, Shi J, Gan L, Huang B, Tao L, Wang S. Sci China Chem, 2022, 65: 1445–1452

    CAS  Google Scholar 

  7. Liu J, Jin Z, Wang X, Ge J, Liu C, Xing W. Sci China Chem, 2019, 62: 669–683

    CAS  Google Scholar 

  8. Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, Liao L, Wu T, Lin D, Liu Y, Jaramillo TF, Nørskov JK, Cui Y. Nat Catal, 2018, 1: 156–162

    CAS  Google Scholar 

  9. Zhang Y, Wu C, Jiang H, Lin Y, Liu H, He Q, Chen S, Duan T, Song L. Adv Mater, 2018, 30: 1707522

    Google Scholar 

  10. Feng YC, Wang X, Wang YQ, Yan HJ, Wang D. J Electrochem, 2022, 28: 2108531

    Google Scholar 

  11. Tang H, Yin H, Wang J, Yang N, Wang D, Tang Z. Angew Chem Int Ed, 2013, 52: 5585–5589

    CAS  Google Scholar 

  12. Jurow M, Schuckman AE, Batteas JD, Drain CM. Coord Chem Rev, 2010, 254: 2297–2310

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindsey JS, Bocian DF. Acc Chem Res, 2011, 44: 638–650

    CAS  PubMed  Google Scholar 

  14. Svane KL, Reda M, Vegge T, Hansen HA. ChemSusChem, 2019, 12: 5133–5141

    CAS  PubMed  Google Scholar 

  15. Li W, Yu A, Higgins DC, Llanos BG, Chen Z. J Am Chem Soc, 2010, 132: 17056–17058

    CAS  PubMed  Google Scholar 

  16. Chen Z, Higgins D, Yu A, Zhang L, Zhang J. Energy Environ Sci, 2011, 4: 3167–3192

    CAS  Google Scholar 

  17. Baranton S, Coutanceau C, Roux C, Hahn F, Léger JM. J Electroanal Chem, 2005, 577: 223–234

    CAS  Google Scholar 

  18. Liu H, Zhang L, Zhang J, Ghosh D, Jung J, Downing BW, Whittemore E. J Power Sources, 2006, 161: 743–752

    CAS  Google Scholar 

  19. Samanta S, Sengupta K, Mittra K, Bandyopadhyay S, Dey A. Chem Commun, 2012, 48: 7631–7633

    CAS  Google Scholar 

  20. Perry SC, Pangotra D, Vieira L, Csepei LI, Sieber V, Wang L, Ponce de León C, Walsh FC. Nat Rev Chem, 2019, 3: 442–458

    CAS  Google Scholar 

  21. Mahata A, Pathak B. Nanoscale, 2017, 9: 9537–9547

    CAS  PubMed  Google Scholar 

  22. Pang Y, Xie H, Sun Y, Titirici MM, Chai GL. J Mater Chem A, 2020, 8: 24996–25016

    CAS  Google Scholar 

  23. Bhattarai A, Marchbanks-Owens K, Mazur U, Hipps KW. J Phys Chem C, 2016, 120: 18140–18150

    CAS  Google Scholar 

  24. Bhattarai A, Mazur U, Hipps KW. J Am Chem Soc, 2014, 136: 2142–2148

    CAS  PubMed  Google Scholar 

  25. Yoshimoto S, Inukai J, Tada A, Abe T, Morimoto T, Osuka A, Furuta H, Itaya K. J Phys Chem B, 2004, 108: 1948–1954

    CAS  Google Scholar 

  26. Yoshimoto S, Tada A, Suto K, Itaya K. J Phys Chem B, 2003, 107: 5836–5843

    CAS  Google Scholar 

  27. Cai ZF, Wang X, Wang D, Wan LJ. ChemElectroChem, 2016, 3: 2048–2051

    CAS  Google Scholar 

  28. Facchin A, Zerbetto M, Gennaro A, Vittadini A, Forrer D, Durante C. ChemElectroChem, 2021, 8: 2825–2835

    CAS  Google Scholar 

  29. Facchin A, Durante C. Adv Sustain Syst, 2022, 6: 2200111

    CAS  Google Scholar 

  30. Facchin A, Kosmala T, Gennaro A, Durante C. ChemElectroChem, 2020, 7: 1431–1437

    CAS  Google Scholar 

  31. Wang X, Wang YQ, Feng YC, Wang D, Wan LJ. Chem Soc Rev, 2021, 50: 5832–5849

    CAS  PubMed  Google Scholar 

  32. Wang X, Cai ZF, Wang YQ, Feng YC, Yan HJ, Wang D, Wan LJ. Angew Chem Int Ed, 2020, 59: 16098–16103

    CAS  Google Scholar 

  33. Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Nature, 2017, 549: 74–77

    CAS  PubMed  Google Scholar 

  34. Gu JY, Cai ZF, Wang D, Wan LJ. ACS Nano, 2016, 10: 8746–8750

    CAS  PubMed  Google Scholar 

  35. Clavilier J. J Electroanal Chem Interfacial Electrochem, 1980, 107: 211–216

    CAS  Google Scholar 

  36. Tersoff J, Hamann DR. Phys Rev B, 1985, 31: 805–813

    CAS  Google Scholar 

  37. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Rev Mod Phys, 1992, 64: 1045–1097

    CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  PubMed  Google Scholar 

  39. White JA, Bird DM. Phys Rev B, 1994, 50: 4954–4957

    CAS  Google Scholar 

  40. Durand Jr. RR, Anson FC. J Electroanal Chem Interfacial Electrochem, 1982, 134: 273–289

    CAS  Google Scholar 

  41. Elbaz L, Korin E, Soifer L, Bettelheim A. J Electroanal Chem, 2008, 621: 91–96

    CAS  Google Scholar 

  42. Sonkar PK, Prakash K, Yadav M, Ganesan V, Sankar M, Gupta R, Yadav DK. J Mater Chem A, 2017, 5: 6263–6276

    CAS  Google Scholar 

  43. Wang G, Ramesh N, Hsu A, Chu D, Chen R. Mol Simul, 2008, 34: 1051–1056

    Google Scholar 

  44. Wang YQ, Wang X, Feng YC, Yan HJ, Wang D, Wan LJ. J Phys Chem C, 2021, 125: 24915–24919

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1501002), the National Natural Science Foundation of China (21725306 and 21972147), the Key Research Program of the Chinese Academy of Sciences (XDPB01), and the National Postdoctoral Program for Innovative Talents (BX20220307) of the Chinese Postdoctoral Science Foundation. The Supercomputing Environment of the Chinese Academy of Sciences is acknowledged for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YC., Wang, X., Yi, ZY. et al. In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction. Sci. China Chem. 66, 273–278 (2023). https://doi.org/10.1007/s11426-022-1465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1465-8

Navigation