Skip to main content
Log in

Breaking 12% efficiency in flexible organic solar cells by using a composite electrode

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The performance of flexible organic solar cells (OSCs) significantly relies on the quality of transparent flexible electrode. Here, we used silver nanowires (AgNWs) with various weight ratios to dope high-conductive poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PH1000) to optimize the optical and electronic properties of PH1000 film. A high-quality flexible composite electrode PET/Ag-mesh/PH1000:AgNWs-20 with smooth surface, a low sheet resistance of 6 Ω/sq and a high transmittance of 86% at 550-nm wavelength was obtained by doping 20 wt% AgNWs to PH1000 (PH1000:AgNWs-20). The flexible OSCs based on the PET/Ag-mesh/PH1000:AgNWs-20 electrode delivered a power conversion efficiency (PCE) of 12.07% with an open circuit voltage (Voc) of 0.826 V, a short-circuit current density (Jsc) of 20.90 mA/cm2 and a fill factor (FF) of 69.87%, which is the highest reported PCE for the flexible indium-tin oxide (ITO)-free OSCs. This work demonstrated that the flexible composite electrodes of PET/Ag-mesh/PH1000:AgNWs are promising alternatives for the conventional PET/ITO electrode, and open a new avenue for developing high-performance flexible transparent electrode for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang SY, Cheng P, Li G, Yang Y. Joule, 2018, 2: 1039–1054

    Article  CAS  Google Scholar 

  2. Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Nat Commun, 2018, 9: 4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun C, Xia R, Shi H, Yao H, Liu X, Hou J, Huang F, Yip HL, Cao Y. Joule, 2018, 2: 1816–1826

    Article  CAS  Google Scholar 

  4. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256

    Article  CAS  Google Scholar 

  5. Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313

    Article  CAS  Google Scholar 

  6. Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y. Adv Mater, 2018, 30: 1800855

    Article  CAS  Google Scholar 

  7. Bo Z. Sci China Chem, 2018, 61: 507–508

    Article  CAS  Google Scholar 

  8. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Article  CAS  Google Scholar 

  9. Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li D, Lai WY, Zhang YZ, Huang W. Adv Mater, 2018, 30: 1704738

    Article  CAS  Google Scholar 

  11. Li H, Liu X, Wang W, Lu Y, Huang J, Li J, Xu J, Fan P, Fang J, Song W. Sol RRL, 2018, 2: 1800123

    Article  CAS  Google Scholar 

  12. Hu L, Kim HS, Lee JY, Peumans P, Cui Y. ACS Nano, 2010, 4: 2955–2963

    Article  CAS  PubMed  Google Scholar 

  13. Seo JH, Hwang I, Um HD, Lee S, Lee K, Park J, Shin H, Kwon TH, Kang SJ, Seo K. Adv Mater, 2017, 29: 1701479

    Article  CAS  Google Scholar 

  14. Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA. Science, 2009, 323: 1590–1593

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh DS, Chen TL, Pruneri V. Appl Phys Lett, 2010, 96: 041109

    Article  CAS  Google Scholar 

  16. Meng W, Ge R, Li Z, Tong J, Liu T, Zhao Q, Xiong S, Jiang F, Mao L, Zhou Y. ACS Appl Mater Interfaces, 2015, 7: 14089–14094

    Article  CAS  PubMed  Google Scholar 

  17. Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. ACS Appl Mater Interfaces, 2016, 8: 14029–14036

    Article  CAS  PubMed  Google Scholar 

  18. Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K, Lin H, Guo Z. Adv Funct Mater, 2017, 27: 1703068

    Article  CAS  Google Scholar 

  19. Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075

    Article  CAS  Google Scholar 

  20. Ou QD, Xie HJ, Chen JD, Zhou L, Li YQ, Tang JX. J Mater Chem A, 2016, 4: 18952–18962

    Article  CAS  Google Scholar 

  21. Kim J, Park S, Lee S, Ahn H, Joe S, Kim BJ, Son HJ. Adv Energy Mater, 2018, 8: 1801601

    Article  CAS  Google Scholar 

  22. Xu X, Fukuda K, Karki A, Park S, Kimura H, Jinno H, Watanabe N, Yamamoto S, Shimomura S, Kitazawa D, Yokota T, Umezu S, Nguyen TQ, Someya T. Proc Natl Acad Sci USA, 2018, 139: 201801187–4594

    Google Scholar 

  23. Huang J, Li CZ, Chueh CC, Liu SQ, Yu JS, Jen AKY. Adv Energy Mater, 2015, 5: 1500406

    Article  CAS  Google Scholar 

  24. Heywang G, Jonas F. Adv Mater, 1992, 4: 116–118

    Article  CAS  Google Scholar 

  25. Reyes-Reyes M, Cruz-Cruz I, López-Sandoval R. J Phys Chem C, 2010, 114: 20220–20224

    Article  CAS  Google Scholar 

  26. Zhang W, Zhao B, He Z, Zhao X, Wang H, Yang S, Wu H, Cao Y. Energy Environ Sci, 2013, 6: 1956–1964

    Article  CAS  Google Scholar 

  27. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K. Adv Mater, 2014, 26: 2268–2272

    Article  CAS  PubMed  Google Scholar 

  28. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y. Adv Funct Mater, 2005, 15: 203–208

    Article  CAS  Google Scholar 

  29. Wang BY, Yoo TH, Lim JW, Sang BI, Lim DS, Choi WK, Hwang DK, Oh YJ. Small, 2015, 11: 1905–1911

    Article  CAS  PubMed  Google Scholar 

  30. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP. Nanotechnology, 2013, 24: 452001

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y. Nat Commun, 2016, 7: 10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8: 1703054

    Article  CAS  Google Scholar 

  33. Zhang J, Xue R, Xu G, Chen W, Bian GQ, Wei C, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1705847

    Article  CAS  Google Scholar 

  34. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  35. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405–7412

    Article  CAS  PubMed  Google Scholar 

  37. Li P, Wang G, Cai L, Ding B, Zhou D, Hu Y, Zhang Y, Xiang J, Wan K, Chen L, Alameh K, Song Q. Phys Chem Chem Phys, 2014, 16: 23792–23799

    Article  CAS  PubMed  Google Scholar 

  38. Jin WY, Ginting RT, Jin SH, Kang JW. J Mater Chem A, 2016, 4: 3784–3791

    Article  CAS  Google Scholar 

  39. Kang SB, Noh YJ, Na SI, Kim HK. Sol Energy Mater Sol Cells, 2014, 122: 152–157

    Article  CAS  Google Scholar 

  40. Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim TS, Lee D, Ko SH. Adv Funct Mater, 2013, 23: 4171–4176

    Article  CAS  Google Scholar 

  41. Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC. Adv Mater, 2011, 23: 4371–4375

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. J Phys Chem B, 1997, 101: 3706–3712

    Article  CAS  Google Scholar 

  43. Zhou H, Wang Y, Zhang J, Yu Z, Li Y, Tan L, Chen Y. J Mater Chem C, 2018, 6: 312–319

    Article  CAS  Google Scholar 

  44. Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G. Nano Energy, 2018, 56: 184–195

    Article  CAS  Google Scholar 

  45. Zhang L, Xu X, Lin B, Zhao H, Li T, Xin J, Bi Z, Qiu G, Guo S, Zhou K, Zhan X, Ma W. Adv Mater, 2018, 30: 1805041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673138, 51820105003, 91633301), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Jiangsu Provincial Natural Science Foundation (BK20160059), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (16KJB430027), and the National Key Research and Development Program of China (2017YFA0207700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowen Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Zhang, J., Chen, X. et al. Breaking 12% efficiency in flexible organic solar cells by using a composite electrode. Sci. China Chem. 62, 851–858 (2019). https://doi.org/10.1007/s11426-018-9430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9430-8

Keywords

Navigation