Skip to main content
Log in

Amphibious superlyophobic shape memory arrays with tunable wettability in both air and water

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Smart superwetting surfaces with ability to reversibly adjust wettability in different surroundings have significant value in realistic application. However, it is still difficult to obtain amphibious superlyophobicity (superhydrophobicity in air and superoleophobicity under-water) on the identical surface, let alone tunable wetting performances. Herein, a smart amphibious shape memory polymer (SMP) surface is introduced. The surface can simultaneously display the superhydrophobicity in air and superoleophobicity under-water. Moreover, due to the excellent shape memory property, its wetting performance in both air and water can be reversibly changed with the variation of surface micro/nanostructures. Finally, based on the shape memory microstructure and tunable wettability, diverse microstructure patterns were repeatedly designed and created on the surface, and programmable droplet storages in both air and water were demonstrated, proving that the surface has the ability to achieve amphibious applications. The work provides a fresh idea for designing novel superwetting surfaces; meanwhile, the special shape memory microstructure and tunable amphibious wettings endow the surface with great practical values in some potential applications such as microdroplet manipulation, bio-detection, and micro-reaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094

    Article  CAS  Google Scholar 

  2. M. Liu, S. Wang, L. Jiang (2017) Nature-inspired superwettability systems. Nat Rev Mater 2

  3. Wang G, Guo Z, Liu W (2014) Interfacial effects of superhydrophobic plant surfaces: A review. J Biobic Eng 11:325–345

    Google Scholar 

  4. Wang S, Liu K, Yao X, Jiang L (2015) Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chem Rev 115:8230–8293

    Article  CAS  Google Scholar 

  5. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed Engl 54:3387–3399

    Article  CAS  Google Scholar 

  6. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil-water separation. Nat Commun 3:1025

    Article  CAS  Google Scholar 

  7. Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L (2013) Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun 4:2276

    Article  CAS  Google Scholar 

  8. Sun Z, Liao T, Liu K, Jiang L, Kim JH, Dou SX (2014) Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures. Small 10:3001–3006

    Article  CAS  Google Scholar 

  9. Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643

    Article  CAS  Google Scholar 

  10. Howarter JA, Youngblood JP (2007) Self-Cleaning and Anti-Fog Surfaces via Stimuli-Responsive Polymer Brushes. Adv Mater 19:3838–3843

    Article  CAS  Google Scholar 

  11. Zhou H, Zhang M, Li C, Gao C, Zheng Y (2018) Excellent Fog-Droplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures. Small 14:e1801335

  12. Wang Y, Knapp J, Legere A, Raney J, Li L (2015) Effect of end-groups on simultaneous oleophobicity/hydrophilicity and anti-fogging performance of nanometer-thick perfluoropolyethers (PFPEs). RSC Adv 5:30570–30576

    Article  CAS  Google Scholar 

  13. Zhang S, Huang J, Chen Z, Lai Y (2017) Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. Small 13

  14. Anjum AS, Sun KC, Ali M, Riaz R, Jeong SH (2020) Fabrication of coral-reef structured nano silica for self-cleaning and super-hydrophobic textile applications. Chem Eng J 401

  15. Wang M, Zhang Z, Wang Y, Zhao X, Yang M, Men X, Xue Q (2020) Colorful superhydrophobic pigments with superior anti-fouling performance and environmental durability. Chem Eng J 384

  16. Liu J, Ye L, Sun Y, Hu M, Chen F, Wegner S, Mailander V, Steffen W, Kappl M, Butt HJ (2020) Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. Adv Mater 32

  17. Tang L, Zeng Z, Wang G, Shen L, Zhu L, Zhang Y, Xue Q (2019) Study of Oil Dewetting Ability of Superhydrophilic and Underwater Superoleophobic Surfaces from Air to Water for High-Effective Self-Cleaning Surface Designing. ACS Appl Mater Interfaces 11:18865–18875

    Article  CAS  Google Scholar 

  18. Kobina E, Kobina Sam D, Lv X, Liu B, Xiao X, Gong S, Yu W, Chen J, Liu J (2019) Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem Eng J 373:531–546

    Article  CAS  Google Scholar 

  19. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25:4192–4198

    Article  CAS  Google Scholar 

  20. Zhang L, Zhou AG, Sun BR, Chen KS, Yu HZ (2021) Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nat Commun 12:982

    Article  CAS  Google Scholar 

  21. Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin FY, Liu Q, Zhu SP, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras RHA, Deng X (2020) Design of robust superhydrophobic surfaces. Nature 582:55–59

    Article  CAS  Google Scholar 

  22. Zhang W, Wang D, Sun Z, Song J, Deng X (2021) Robust superhydrophobicity: mechanisms and strategies. Chem Soc Rev 50:4031–4061

    Article  CAS  Google Scholar 

  23. Chen W, Zhang P, Zang R, Fan J, Wang S, Wang B, Meng J (2020) Nacre-Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Adv Mater 32

  24. Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W (2014) Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chem Commun (Camb) 50:5586–5589

    Article  CAS  Google Scholar 

  25. Liu W, Xiang S, Liu X, Yang B (2020) Underwater Superoleophobic Surface Based on Silica Hierarchical Cylinder Arrays with a Low Aspect Ratio. ACS Nano 14:9166–9175

    Article  CAS  Google Scholar 

  26. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-Hydrophobic Surfaces: From Natural to Artificial. Adv, Mater

    Google Scholar 

  27. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Adv Mater 21:665–669

    Article  CAS  Google Scholar 

  28. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3:671–690

    Article  CAS  Google Scholar 

  29. Tian X, Jokinen V, Li J, Sainio J, Ras RH (2016) Unusual Dual Superlyophobic Surfaces in Oil-Water Systems: The Design Principles. Adv Mater 28:10652–10658

    Article  CAS  Google Scholar 

  30. Sun Y, Guo Z (2020) Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry. Adv Mater 32

  31. Tie L, Li J, Guo Z, Liang Y, Liu W (2019) Controllable preparation of multiple superantiwetting surfaces: From dual to quadruple superlyophobicity. Chem Eng J 369:463–469

    Article  CAS  Google Scholar 

  32. Tie L, Li J, Liu M, Guo Z, Liang Y, Liu W (2018) Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. J Mater Chem A 6:11682–11687

    Article  CAS  Google Scholar 

  33. Sun Y, Huang J, Guo Z, Liu W (2021) Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water. J Mater Chem A 9:1471–1479

    Article  CAS  Google Scholar 

  34. Wang J, Wei G, Han Z, Zou M, Chen Y (2018) Programmable wettability on photocontrolled graphene film. Sci Adv 4:eaat7392

  35. Chen Y, Li K, Zhang S, Qin L, Deng S, Ge L, Xu LP, Ma L, Wang S, Zhang X (2020) Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing. ACS Nano 14:4654–4661

    Article  CAS  Google Scholar 

  36. Zuo Y, Zheng L, Zhao C, Liu H (2020) Micro-/Nanostructured Interface for Liquid Manipulation and Its Applications. Small 16

  37. Sun L, Bian F, Wang Y, Wang Y, Zhang X, Zhao Y (2020) Bioinspired programmable wettability arrays for droplets manipulation. Proc Natl Acad Sci U S A 117:4527–4532

    Article  CAS  Google Scholar 

  38. Wu Y, Feng J, Gao H, Feng X, Jiang L (2019) Superwettability-Based Interfacial Chemical Reactions. Adv Mater 31

  39. Cheng M, Liu Q, Ju G, Zhang Y, Jiang L, Shi F (2014) Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. Adv Mater 26:306–310

    Article  CAS  Google Scholar 

  40. Gao D, Cao J, Guo Z (2019) Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion. Chem Commun (Camb) 55:3394–3397

    Article  CAS  Google Scholar 

  41. Zhang D, Cheng Z, Kang H, Yu J, Liu Y, Jiang L (2018) A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew Chem Int Ed Engl 57:3701–3705

    Article  CAS  Google Scholar 

  42. Shang B, Chen M, Wu L (2019) NIR-Triggered Photothermal Responsive Coatings with Remote and Localized Tunable Underwater Oil Adhesion. Small 15

  43. Kang H, Liu Y, Lai H, Yu X, Cheng Z, Jiang L (2018) Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO2 Nanotube Arrays. ACS Nano 12:1074–1082

    Article  CAS  Google Scholar 

  44. Dong J, Zhang J (2019) Photochromic and super anti-wetting coatings based on natural nanoclays. J Mater Chem A 7:3120–3127

    Article  CAS  Google Scholar 

  45. Minko S, Müller M, Motornov M, Nitschke M, Stamm M (2003) Two-level structured self-adaptive surfaces with reversibly tunable properties. J Am Chem Soc 125:3896–3900

    Article  CAS  Google Scholar 

  46. Guselnikova O, Svanda J, Postnikov P, Kalachyova Y, Svorcik V, Lyutakov O (2017) Fast and Reproducible Wettability Switching on Functionalized PVDF/PMMA Surface Controlled by External Electric Field. Adv Mater Interfaces 4:1600886

    Article  CAS  Google Scholar 

  47. Wang J-N, Liu Y-Q, Zhang Y-L, Feng J, Sun H-B (2018) Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity. NPG Asia Mater 10:e470–e470

    Article  CAS  Google Scholar 

  48. Shahsavan H, Salili SM, Jakli A, Zhao B (2015) Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Adv Mater 27:6828–6833

    Article  CAS  Google Scholar 

  49. Lee SG, Lee DY, Lim HS, Lee DH, Lee S, Cho K (2010) Switchable transparency and wetting of elastomeric smart windows. Adv Mater 22:5013–5017

    Article  CAS  Google Scholar 

  50. Wang J-N, Liu Y-Q, Zhang Y-L, Feng J, Wang H, Yu Y-H, Sun H-B (2018) Wearable Superhydrophobic Elastomer Skin with Switchable Wettability. Adv Funct Mater 28:1800625

    Article  CAS  Google Scholar 

  51. Lee WK, Jung WB, Rhee D, Hu J, Lee YL, Jacobson C, Jung HT, Odom TW (2018) Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Adv Mater 30

  52. Lv T, Cheng Z, Zhang E, Kang H, Liu Y, Jiang L (2017) Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry. Small 13

  53. Cheng Z, Zhang D, Lv T, Lai H, Zhang E, Kang H, Wang Y, Liu P, Liu Y, Du Y, Dou S, Jiang L (2018) Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting. Adv Funct Mater 28:1705002

    Article  CAS  Google Scholar 

  54. Cheng Z, Zhang D, Luo X, Lai H, Liu Y, Jiang L (2021) Superwetting Shape Memory Microstructure: Smart Wetting Control and Practical Application. Adv Mater 33

  55. Katariya Pankaj V, Panda Subrata K, Hirwani Chetan K, Mehar K, Thakare O (2017) Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre. Smart Struc Sys 20:595–605

  56. Katariya PV, Das A, Panda SK (2018) Buckling analysis of SMA bonded sandwich structure – using FEM. IOP Conference Series: Mater Sci Eng 338

  57. Mehar K, Mishra PK, Panda SK (2020) Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure. Mechanics Adv Mater Struc 1–13

  58. Mehar K, Mishra PK, Panda SK (2021) Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels. Comput Math Appl 90:13–24

    Article  Google Scholar 

  59. Mehar K, Mishra PK, Panda SK (2021) Thermal Post-Buckling Strength Prediction and Improvement of Shape Memory Alloy Bonded Carbon Nanotube-Reinforced Shallow Shell Panel: A Nonlinear Finite Element Micromechanical Approach. J Pressure Vessel Technol 143

  60. Mehar K, Panda SK, Dewangan HC (2020) Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre. Structures 28:2300–2310

    Article  Google Scholar 

  61. Panda SK, Singh BN (2010) Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method. Proc Inst Mech Eng C J Mech Eng Sci 224:757–769

    Article  Google Scholar 

  62. Panda SK, Singh BN (2013) Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerosp Sci Technol 29:47–57

    Article  Google Scholar 

  63. Panda SK, Singh BN (2013) Post-Buckling Analysis of Laminated Composite Doubly Curved Panel Embedded with SMA Fibers Subjected to Thermal Environment. Mech Adv Mater Struct 20:842–853

    Article  Google Scholar 

  64. Panda SK, Singh BN (2013) Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers. Nonlinear Dyn 74:395–418

    Article  Google Scholar 

  65. Shaikh SF, Panda SK, Sharma N, Jena S (2021) Creep behavior of Nickel-Titanium shape-memory alloys under static and dynamic loadings: an FEM approach. European Phys J Plus 136

  66. Shinde D, Katariya PV, Mehar K, Khan MR, Panda SK, Pandey HK (2018) Experimental training of shape memory alloy fibres under combined thermomechanical loading. STRUCTURAL ENGINEERING AND MECHANICS 68:519–526

    Google Scholar 

  67. Lv T, Cheng Z, Zhang D, Zhang E, Zhao Q, Liu Y, Jiang L (2016) Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage. ACS Nano 10:9379–9386

    Article  CAS  Google Scholar 

  68. Bai X, Yang Q, Fang Y, Yong J, Bai Y, Zhang J, Hou X, Chen F (2020) Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation. Chem Eng J 400

  69. Chen C-M, Chiang C-L, Lai C-L, Xie T, Yang S (2013) Buckling-Based Strong Dry Adhesives Via Interlocking. Adv Funct Mater 23:3813–3823

    Article  CAS  Google Scholar 

  70. Pathreeker S, Chando P, Chen F-H, Biria S, Li H, Finkelstein EB, Hosein ID (2021) Superhydrophobic Polymer Composite Surfaces Developed via Photopolymerization. Acs Applied Polymer Materials 3:4661–4672

    Article  CAS  Google Scholar 

  71. Li C, Ren L, Zhang C, Xu W, Liu X (2021) TiO2 Coated Polypropylene Membrane by Atomic Layer Deposition for Oil-Water Mixture Separation. Advanced Fiber Materials 3:138–146

    Article  CAS  Google Scholar 

  72. Wang YF, Li BX, Liu TX, Xu CY, Ge ZW (2014) Controllable fabrication of superhydrophobic TiO2 coating with improved transparency and thermostability. Colloid Surf A-Physicochem Eng Asp 441:298–305

    Article  CAS  Google Scholar 

  73. Segundo IR, Ferreira C, Freitas EF, Carneiro JO, Fernandes F, Landi S, Costa MF (2018) Assessment of photocatalytic, superhydrophobic and self-cleaning properties on hot mix asphalts coated with TiO2 and/or ZnO aqueous solutions. Constr Build Mater 166:500–509

    Article  CAS  Google Scholar 

  74. Seo MS, Kim JH, Kim SS, Kang H, Sohn BH (2015) Transferrable superhydrophobic TiO2 nanorods on reduced graphene oxide films using block copolymer templates. Nanotechnology 26:6

    Article  CAS  Google Scholar 

  75. Zhang D, Cheng Z, Kang H, Yu J, Liu Y, Jiang L (2018) A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew Chem Int Ed 57:3701–3705

    Article  CAS  Google Scholar 

  76. Su B, Tian Y, Jiang L (2016) Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J Am Chem Soc 138:1727–1748

    Article  CAS  Google Scholar 

  77. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  78. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36–36

    Article  CAS  Google Scholar 

  79. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000

    Article  CAS  Google Scholar 

  80. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  81. Wenzel RN (1936) Resistance of Solid Surfaces to Wetting by Water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  82. Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interface Sci 222:92–103

    Article  CAS  Google Scholar 

  83. Starkweather BA, Zhang X, Counce RM (2000) An Experimental Study of the Change in the Contact Angle of an Oil on a Solid Surface. Ind Eng Chem Res 39:362–366

    Article  CAS  Google Scholar 

  84. Järn M, Granqvist B, Lindfors J, Kallio T, Rosenholm JB (2006) A critical evaluation of the binary and ternary solid–oil–water and solid–water–oil interaction. Adv Colloid Interface Sci 123–126:137–149

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (NSFC Grant Nos. 22075061, 51790502, 51902070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongjun Cheng, Youshan Wang or Yuyan Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Lai, H., Jiao, X. et al. Amphibious superlyophobic shape memory arrays with tunable wettability in both air and water. Adv Compos Hybrid Mater 5, 788–797 (2022). https://doi.org/10.1007/s42114-021-00363-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00363-5

Keywords

Navigation