Skip to main content
Log in

One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide and Ni-Al layered double hydroxides (GO@LDH) nanocomposites were synthesized via a one-pot hydrothermal process, and characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in detail. The exploration of U(VI) sorption on GO@LDH surface was performed as a function of ionic strength, solution pH, contact time, U(VI) initial concentrations and temperature. Results of Langmuir isotherms showed that the sorption capacity of GO@LDH (160 mg/g) was much higher than those of LDH (69 mg/g) and GO (92 mg/g). The formed surface complexes between surface oxygen-containing functional groups of GO@LDH and U(VI) turned out to be the interaction mechanism of U(VI) with GO@LDH. According to the thermodynamic studies results, the sorption interaction was actually a spontaneous and endothermic chemical process. The sorption isotherms were better fitted with the Langmuir model compared with other models, which suggested the interaction was mainly dominated by monolayer coverage. The GO@LDH nanocomposites provide potential applications as adsorbents in the enrichment of radionuclides from wastewater in nuclear waste management and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D. Chem Eng J, 2015, 259: 752–760

    Article  CAS  Google Scholar 

  2. Yu S, Wang X, Tan X, Wang X. Inorg Chem Front, 2015, 2: 593–612

    Article  CAS  Google Scholar 

  3. Li S, Bai H, Wang J, Jing X, Liu Q, Zhang M, Chen R, Liu L, Jiao C. Chem Eng J, 2012, 193-194: 372–380

    Article  CAS  Google Scholar 

  4. Salomone VN, Meichtry JM, Litter MI. Chem Eng J, 2015, 270: 28–35

    Article  CAS  Google Scholar 

  5. Zhou C, Ontiveros-Valencia A, Cornette de Saint Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE. Water Res, 2014, 64: 255–264

    Article  CAS  Google Scholar 

  6. Liu J, Zhao C, Zhang Z, Liao J, Liu Y, Cao X, Yang J, Yang Y, Liu N. Chem Eng J, 2016, 288: 505–515

    Article  CAS  Google Scholar 

  7. Troyer LD, Maillot F, Wang Z, Wang Z, Mehta VS, Giammar DE, Catalano JG. Geochim Cosmochim Acta, 2016, 175: 86–99

    Article  CAS  Google Scholar 

  8. Liu W, Zhao X, Wang T, Zhao D, Ni J. Chem Eng J, 2016, 286: 427–435

    Article  CAS  Google Scholar 

  9. Ding C, Cheng W, Sun Y, Wang X. J Hazard Mater, 2015, 295: 127–137

    Article  CAS  Google Scholar 

  10. Ding C, Cheng W, Sun Y, Wang X. Geochim Cosmochim Acta, 2015, 165: 86–107

    Article  CAS  Google Scholar 

  11. Schindler M, Legrand CA, Hochella MF. Geochim Cosmochim Acta, 2015, 153: 15–36

    Article  CAS  Google Scholar 

  12. Mei H, Tan X, Yu S, Ren X, Chen C, Wang X. Chem Eng J, 2015, 269: 371–378

    Article  CAS  Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  14. Ding C, Cheng W, Sun Y, Wang X. Dalton Trans, 2014, 43: 3888–3896

    Article  CAS  Google Scholar 

  15. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  Google Scholar 

  16. Dubey SP, Dwivedi AD, Kim IC, Sillanpaa M, Kwon YN, Lee C. Chem Eng J, 2014, 244: 160–167

    Article  CAS  Google Scholar 

  17. Li J, Fan Q, Wu Y, Wang X, Chen C, Tang Z, Wang X. J Mater Chem A, 2016, 4: 1737–1746

    Article  CAS  Google Scholar 

  18. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M. Ind Eng Chem Res, 2013, 52: 10152–10159

    Article  CAS  Google Scholar 

  19. Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X, Kanatzidis MG. J Am Chem Soc, 2015, 137: 3670–3677

    Article  CAS  Google Scholar 

  20. Hummers WS, Offeman RE. J Am Chem Soc, 1958, 80: 1339–1339

    Article  CAS  Google Scholar 

  21. Yu S, Wang X, Chen Z, Wang J, Wang S, Hayat T, Wang X. J Hazard Mater, 2017, 321: 111–120

    Article  CAS  Google Scholar 

  22. Wen T, Wu X, Tan X, Wang X, Xu A. ACS Appl Mater Interfaces, 2013, 5: 3304–3311

    Article  CAS  Google Scholar 

  23. Zhao G, Li J, Ren X, Chen C, Wang X. Environ Sci Technol, 2011, 45: 10454–10462

    Article  CAS  Google Scholar 

  24. Yu S, Wang X, Ai Y, Tan X, Hayat T, Hu W, Wang X. J Mater Chem A, 2016, 4: 5654–5662

    Article  CAS  Google Scholar 

  25. Jin Z, Wang X, Sun Y, Ai Y, Wang X. Environ Sci Technol, 2015, 49: 9168–9175

    Article  CAS  Google Scholar 

  26. Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X. Geochim Cosmochim Acta, 2016, 180: 51–65

    Article  CAS  Google Scholar 

  27. Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X. Chem Eng J, 2016, 287: 448–455

    Article  CAS  Google Scholar 

  28. Wang X, Chen Z, Wang X. Sci China Chem, 2015, 58: 1766–1773

    Article  CAS  Google Scholar 

  29. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem Eng J, 2012, 210: 539–546

    Article  CAS  Google Scholar 

  30. Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291–1299

    Article  CAS  Google Scholar 

  31. Ho YS, McKay G. Chem Eng J, 1998, 70: 115–124

    Article  CAS  Google Scholar 

  32. Ho YS. J Hazard Mater, 2006, 136: 681–689

    Article  CAS  Google Scholar 

  33. Langmuir I. J Am Chem Soc, 1918, 40: 1361–1403

    Article  CAS  Google Scholar 

  34. Freundlich HMF. J Phys Chem, 1906, 57: 385–470

    CAS  Google Scholar 

  35. Shan R, Yan L, Yang K, Hao Y, Du B. J Hazard Mater, 2015, 299: 42–49

    Article  CAS  Google Scholar 

  36. Wang X, Wang J, Chen Y, Chen Z, Wang Q, Hayat T, Wang X. J Radioanal Nucl Chem, 2016, 309: 1241–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91326202, 21225730, 21577032) and the Fundamental Research Funds for the Central Universities (JB2015001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Wang, J., Song, S. et al. One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci. China Chem. 60, 415–422 (2017). https://doi.org/10.1007/s11426-016-0420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0420-8

Keywords

Navigation